Enhancement-mode BEOL In₂O₃ FETs with Record Logic Performance: Experiments and Compact Modeling

Yanjie Shao^{1*}, Dylan Ma², Dimitri A. Antoniadis¹, Lan Wei², and Jesús A. del Alamo¹

¹Microsystems Technology Laboratories, MIT, Cambridge, MA 02139, USA, *email: shaoyj@mit.edu

² Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada

Abstract—We demonstrate record logic performance in backend-of-the-line (BEOL)-compatible enhancement-mode (Emode) amorphous oxide semiconductor (AOS) field-effect transistors (FETs). These devices exhibit near-ideal scalability down to 40 nm in channel length (L_{ch}). Using an In_2O_3 channel by plasma-enhanced atomic-layer deposition (PEALD), we achieve E-mode operation in $L_{ch} = 40$ nm devices with a maximum drive current (I_{max}) of 1.35 mA/ μ m, a peak transconductance $(g_{m,peak})$ of 490 μ S/ μ m, and a close-tothermal-limit average room-temperature subthreshold swing (S_{avg}) of 63 mV/dec, all at a drain-to-source voltage (V_{ds}) of 0.5 V. A total source (S) and drain (D) resistance (R_{sd}) of 169 E-mode record-low among AOS-FETs, demonstrated. Capacitance-voltage (C-V) characteristics reveal different threshold voltages (V_t) in the intrinsic channel and in the S/D to gate (G) overlap regions. We develop a physics-based MVS-AOS model which accurately captures the essential physics at play in our experimental devices, including C with frequency dispersion in the S/D region. This work advances state-of-the-art BEOL AOS-FET technology, and paves the way for future design-technology co-optimization (DTCO) on this promising device platform for BEOL monolithic 3D integration.

I. INTRODUCTION

AOSs have emerged as promising channel material candidates for BEOL monolithic 3D integration, thanks to large-area low-thermal-budget processing capability, decent electron mobility (μ_e), and ultralow leakage current [1-12]. Especially, In₂O₃-channel FETs have demonstrated impressive performance [13]. However, they generally display depletionmode (D-mode) operation with $V_t < 0$ [12-14]. Many emerging applications such as 1T1C and 2T0C embedded dynamic random-access memory (eDRAM) desire high-performance Emode FETs to achieve long retention, fast switching, and high energy efficiency [15]. Recently, we have demonstrated Emode BEOL FETs based on a PEALD-In₂O₃ channel [16]. This earlier work as well as that of other authors, however, suffered from relatively poor scalability. The full potential of this novel device technology and the development of a physically meaningful compact model have yet to be realized.

In this work, we have fabricated nanoscale PEALD-In₂O₃ FETs and carried out systematic I-V and C-V characterization together with compact modeling. We have achieved record logic performance among any E-mode AOS FETs [1-12] (**Fig.** 1), including record-high $I_{\rm max}=1.35$ mA/ μ m and $g_{\rm m,pk}=490$ μ S/ μ m at $V_{\rm ds}=0.5$ V with a near-ideal $S_{\rm avg}=63$ mV/dec and a record-low $R_{\rm sd}=169$ $\Omega.\mu$ m in $L_{\rm ch}=40$ nm devices. We demonstrate near-ideal $L_{\rm ch}$ scaling with negligible short-channel effects (SCEs) down to 40 nm, the smallest $L_{\rm ch}$ in this work. A compact model (MVS-AOS) has been formulated following classic drift-diffusion theory that includes quantum effects. Our model accurately captures key device operation

features over the entire range of $L_{\rm ch}$, including intrinsic and extrinsic C-V behavior, as well as bias-dependent $\mu_{\rm e}$ and $R_{\rm sd}$.

II. DEVICE FABRICATION

Schematic device structure and key fabrication steps are shown in Figs. 2(a)-(b). We adopted a tungsten (W) gate by sputtering, a 4.8-nm-thick HfO_2 gate insulator by PEALD at 250 °C, a 2.3-nm-thick In_2O_3 channel by PEALD at 150 °C, and a Ni/Au bilayer for S/D contact. Channel isolation was done with a Cl-based reactive-ion etching (RIE) process. Our devices feature channel widths (W) ranging from 5 μ m to 60 nm and $L_{\rm ch}$ ranging from 970 nm to 40 nm. Fig. 2(c) shows an SEM image of a representative device with $L_{\rm ch}=40$ nm.

III. ELECTRICAL CHARACTERISTICS

Fig. 3 shows transfer and output characteristics of FETs with W = 5 μm and different $L_{\rm ch}$. Linear turn-on in all the devices indicates good Ohmic contacts [**Figs. 3(d)-(f)**]. In the $L_{\rm ch} = 40$ nm device [**Fig. 3(a)**], a nearly ideal $S_{\rm avg} = 63$ mV/dec over three decades of drain current ($I_{\rm d}$) is obtained at both $V_{\rm ds} = 0.05$ and 0.5 V with negligible drain-induced barrier lowering (DIBL). $I_{\rm max} > 1$ mA/μm is obtained at $V_{\rm ds} = 0.5$ V in this device [**Fig. 3(d)**]. Remarkable $S_{\rm avg}$ down to the thermionic limit, 60 mV/dec, is observed over two decades of current in long-channel devices [**Fig. 3(c)**], suggesting a very high-quality metal-oxide-semiconductor (MOS) interface.

Transfer characteristics of a set of $W=5~\mu m$ devices with different $L_{\rm ch}$ in both log and linear scales at $V_{\rm ds}=0.05$ and 0.5 V are shown in **Fig. 4**. Again, for all the devices, $S_{\rm avg}$ approaches 60 mV/dec. The tight $V_{\rm t}$ distribution highlights the excellent electrostatic scaling in our transistors.

We have further characterized devices with different W down to 60 nm. Fig. 5 shows transfer and output characteristics of a transistor with W=60 nm and $L_{\rm ch}=40$ nm. In this device, $I_{\rm max}=1.35$ (1.9) mA/ μ m is obtained at $V_{\rm ds}=0.5$ (0.7) V together with $S_{\rm avg}=69$ mV/dec, a value limited by the instrument noise floor. Fig. 6 shows W scaling leads to substantial improvement in $I_{\rm max}$ with a slight positive $V_{\rm t}$ shift and little $S_{\rm avg}$ degradation.

We have performed gated transmission line method (G-TLM) measurements for multiple values of L_{ch} and W (Fig. 7). Total resistance (R_{total}) is extracted at $V_{\text{ds}} = 0.05 \text{ V}$ and varying gate overdrive ($V_{ov} = V_{gs} - V_t$). V_t is defined at a constant 4 nA× $W/L_{\rm ch}$, corresponding to 100 nA/ μ m @ $L_{\rm ch}$ = 40 nm. Examples of R_{total} vs. L_{ch} at $V_{\text{ov}} = 3.8$, 3.9 V are shown in Fig. 7 where good linear dependences are demonstrated. This enables us to extract channel sheet resistance (R_{sh}) and unit-width R_{sd} . We observe a clear decrease of both $R_{\rm sd}$ and $R_{\rm sh}$ as $V_{\rm ov}$ increases (**Fig. 8**). This is due to an increase in μ_e as sheet carrier concentration (N_{sheet}) increases, as will be shown later. A clear decrease of $R_{\rm sd}$ is also seen with decreasing W, while $R_{\rm sh}$ remains nearly W-independent. This suggests that intrinsic channel properties (N_{sheet} and μ_{e}) are likely independent of W, while the S/D regions become more conductive in narrower devices, likely induced by mechanical strain. Further study of strain effect is required. Remarkably, a record-low $R_{\rm sd}=169$ $\Omega.\mu{\rm m}$ is achieved at W=60 nm suggesting a transfer length $(L_{\rm T})$ of ~30 nm. Such a short $L_{\rm T}$ highlights the highperformance potential in E-mode PEALD-ln₂O₃ FETs with a scaled contact length.

Fig. 9 presents the scaling behavior for key figures-of-merit at $V_{\rm ds} = 0.5$ V. Fig. 9(a) graphs $g_{\rm m}$ characteristics for $L_{\rm ch} = 40$ nm devices with different W as a function of V_{ov} . At a low V_{ov} < ~0.5 V, all the curves overlap, indicating intrinsic-channeldominated electron transport. As Vov increases, gm saturation appears first in wider devices leading to a lower $g_{m,peak}$ limited by the higher $R_{\rm sd}$. We obtain a high $g_{\rm m,peak} = 490 \ \mu \rm S/\mu m$ at $V_{\rm ds}$ = 0.5 V in the W/L_{ch} = 60/40 nm device. Figs. 9(b) and 9(c) show excellent SCE as $L_{\rm ch}$ scales down but a slightly positive $V_{\rm t}$ shift and a minor $S_{\rm avg}$ degradation as W scales down. This is attributed to the steepest slope region of the *I-V* characteristics not being resolved in narrow-W devices due to limited instrument resolution. The scaling of $g_{m,peak}$ [Fig. 9(d)] clearly demonstrates the gradual transition of channel-limited transport at long $L_{\rm ch}$ to $R_{\rm sd}$ -limited current at short $L_{\rm ch}$. At $L_{\rm ch} = 970$ nm, all the devices display nearly identical $g_{m,peak}$, while at $L_{ch} = 40$ nm, clear increase of $g_{m,peak}$ is visible as W decreases.

To understand charge-control physics, we characterized C-V behavior in W = 5 um devices, the same set as shown in **Figs.** 3 and 4. S/D were shorted during the measurements. Fig. 10(a) shows mild frequency dispersion of C for the $L_{ch} = 970$ nm device. The frequency-independent C at low $V_{\rm g}$ when the device turns on from full depletion to weak accumulation indicates a nearly trap-free MOS interface, aligning well with the observed $S_{\text{avg}} = 60 \text{ mV/dec.}$ Fig. 10(b) shows 50-kHz C-V curves for devices with varying L_{ch} . All the curves converge to a nearly constant C at negative bias, likely originating in the fullydepleted S/D contact regions, as well as bias-independent pad parasitics. Thanks to a nearly L_{ch} -insensitive V_t as shown in Fig. **8(b)**, we can extract intrinsic channel C through normalized differential C (C_{diff}) between several pairs of devices with different L_{ch} . Despite unavoidable noise due to the very small Cmagnitude, reproducible C_{diff} results are obtained [Fig. 10(c)] corresponding to a capacitance equivalent thickness (CET) of \sim 1.4 nm. With this result, we can then study $L_{\rm ch}$ -independent Ccomponents. This includes a bias-dependent overlap $C(C_{ov})$ originating from accumulation and depletion in the S/D regions, as well as a bias-independent parasitic $C(C_{par})$. Taking the L_{ch} = 40 nm device as an example, we show the split of Ccomponents in Fig. 10(d). Bias-dependent C_{ov} dominates in this short device. This explains the nearly saturated C-V curves in Fig. 10(b) when $L_{\rm ch} \le 70$ nm. We have further extracted $C_{\rm ov}$ + C_{par} at 50 kHz and 1 MHz, showing L_{ch} -independent behavior at both frequencies [Fig. 10(e)-(f)]. Minor variation is due to the unavoidable process uncertainty in the fabrication. An interesting finding from this C analysis is that V_t in the S/D regions (V_{tov}) is ~0.9 V, substantially more positive than the channel V_t of ~0.1 V. Examining the frequency dispersion of C-V, we find that it is almost L_{ch} -independent in magnitude [Fig. 10(g)] and it suddenly appears at ~0.9 V. This strongly suggests that prominent trapping effect is taking place in the S/D regions, as opposed to the intrinsic channel.

We summarize the unique physics of our devices in Fig. 10(h) that suggests a lower doping level under the contacts. This observation might explain the excellent L_{ch} scaling of SCE

in our devices in contrast with other Ni-contacted In_2O_3 FETs with severe V_t roll-off ascribed to oxygen-scavenging-induced heavier doping in the Ni-contacted S/D regions [17].

From the *I-V* and *C-V* characteristics, we calculate $N_{\rm sheet}$ by integrating $C_{\rm diff}$ as shown in **Fig. 11(a)**. We then extract intrinsic field-effect mobility ($\mu_{\rm FE,i}$) using the linear-regime transfer characteristics of the $W/L_{\rm ch} = 5~\mu {\rm m}/970~{\rm nm}$ device [**Fig. 11(b)**], obtaining a peak $\mu_{\rm FE,i}$ of 21.5 cm²/(V.s).

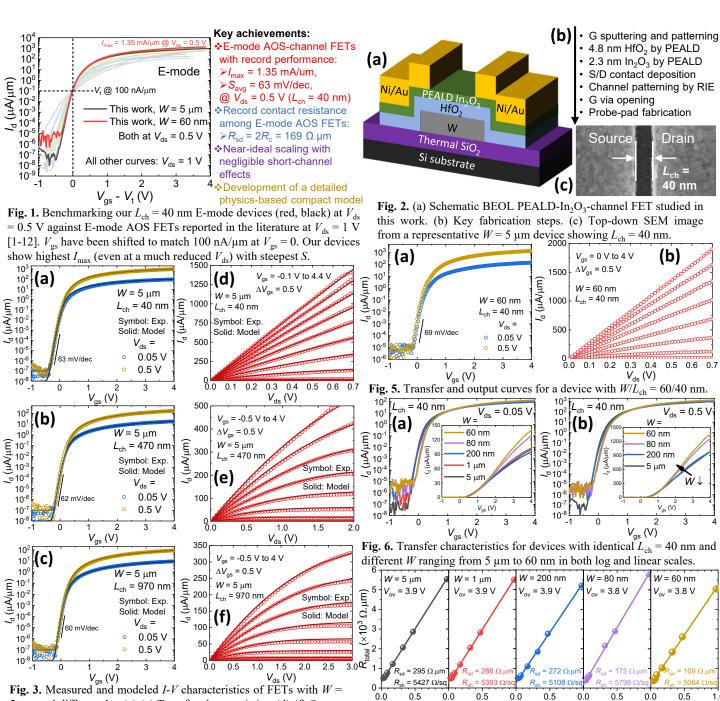
IV. MVS-AOS MODELING AND DEVICE PHYSICS

A physics-based compact model (MVS-AOS) is developed following the equivalent circuit in **Fig. 12** and key equations listed in **Fig. 13**. The basic current and charge in the intrinsic regions [Eqs. (1)-(3)] are formulated following the classic drift-diffusion theory used in [18]. Additional effects critical to AOS FETs are implemented on top of the basic model, including (i) quantum effects [19] in both channel and S/D regions, (ii) Coulomb scattering limited effective mobility, (iii) $C_{\rm ov}$ with frequency dispersion and (iv) bias-dependent $R_{\rm sd}$ and $C_{\rm ov}$. In $R_{\rm sd}$ = $2(R_{\rm B} + R_{\rm C})$, $R_{\rm B}$ decreases with $V_{\rm gs}$ due to decreasing Coulomb scattering. The frequency dispersion in $C_{\rm ov}$ is captured by adding $r_{\rm ov}$ (**Fig. 12**). A coefficient of 1.2 is used for empirically modeling the power-law $V_{\rm ov}$ dependence of both $\mu_{\rm FE,i}$ and $1/R_{\rm B}$.

Modeled vs. experimental I-V and C-V characteristics are shown in **Fig. 3** and **Fig. 10**, respectively. Excellent accuracy across all L_{ch} is achieved, validating that correct physics are captured. Channel current, even at $L_{ch} = 40$ nm, appears to be mobility-limited (rather than saturation-velocity-limited) over the range of measured V_{ds} . Our modeling results emphasize the importance of parasitic engineering in short- L_{ch} AOS-FETs.

Finally, we benchmark $R_{\rm sd}$ vs. $V_{\rm t}$ for short- $L_{\rm ch}$ AOS FETs, as well as maximum $g_{\rm m,peak}$ achieved in each AOS material with E-mode FET operation at $V_{\rm ds} = 0.5$ V (**Fig. 14**). Our devices show significant performance improvement in the on-state and exhibit the lowest $R_{\rm sd}$ when compared to any E-mode AOS-based FETs [1-12,14-16,20-27].

V. CONCLUSIONS


This work demonstrated an E-mode BEOL AOS-FET technology with record logic performance and excellent scalability. Our comprehensive study reveals unique physics under the contacts. An MVS-AOS compact model has been developed that accurately describes transistor behavior over the entire dimensional range. Our results should be instrumental in facilitating future high-performance AOS-FET development for BEOL monolithic 3D integration.

ACKNOWLEDGMENT

This work was supported by SRC (#3140.001) and Intel Corporation through MIT AI HW Program. Device fabrication was carried out at MTL and MIT.nano facilities of MIT.

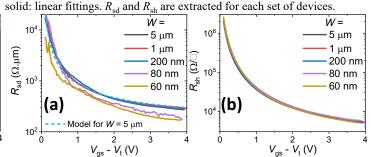
REFERENCES

[1] Q. Li, IEDM, 22.7.1, 2022. [2] D. Zheng, IEDM, 4.3.1, 2022. [3] K. Chen, VLSI, 298, 2022. [4] K. A. Aabrar, IEDM, 2023. [5] Y.-K. Liang, IEDM, 2023. [6] J. Zhang, IEDM, 2023. [7] J.-C. Chiu, VLSI, 17-3.1, 2023. [8] S. Hooda, VLSI, T17-1.1, 2023. [9] Z. Wu, EDL, 45, 408, 2024. [10] Q. Lin, IEDM, 2024. [11] K. A. Aabrar, VLSI, 2024. [12] S. Lee, VLSI, 2024. [13] M. Si, VLSI, T2-4.1, 2021. [14] C. Niu, IEDM, 2023. [15] K. Toprasertpong, VLSI, T11-4.1, 2023. [16] Y. Shao, IEDM, 2024. [17] J.-Y. Lin, TED, 72, 3004, 2025. [18] U. Radhakrishna, TED, 66, 95, 2019. [19] S. Rakheja, TED, 62, 2786, 2015. [20] J. Zhang, VLSI, T17-2.1, 2023. [21] Y. Kang, VLSI, T11-2.1, 2023. [22] C. Gu, EDL, 44, 837, 2023. [23] S. Wahid, IEDM, 12.5.1, 2022. [24] W. Chakraborty, VLSI, TH2.1, 2020. [25] K. Han, TED, 68, 6610, 2021. [26] J. Zhang, EDL, 44, 273, 2023. [27] J.-Y. Lin, IEDM, 2024.

0.5

 L_{ch} (μm)

0.0


0.5

 L_{ch} (μ m)

0.0

Fig. 3. Measured and modeled I-V characteristics of FETs with W = 5 μ m and different L_{ch} : (a)-(c) Transfer characteristics, (d)-(f) Output characteristics. The MVS-AOS model (Section IV) shows good accuracy and scalability.

10² $W = 5 \mu m$ $W = 5 \mu m$ 10 10² (a) 10¹ 10⁰ = 40 to 970 nm = 40 to 970 nm 10 (m¹/₂ 10⁻¹) 10⁻² 10⁻³ (m/km) 10⁻¹ 10⁻² 10⁻³ $V_{\rm ds} = 0.05 \, \text{V}$ = 0.5 V€10⁻⁴ .⊽10⁻ 10-10-10-10⁻ 10 V_{gs} (V) 10 V_{gs} (V) 10 10 0 2 $V_{gs}(V)$

 L_{ch} (μ m)

Fig. 7. Gated-TLM analysis of FETs with different W. Symbols: exp. data;

0.0

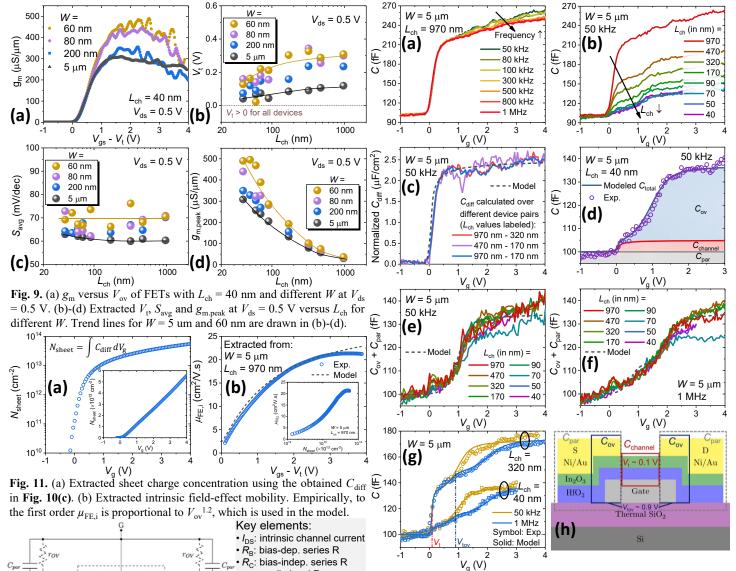
0.5

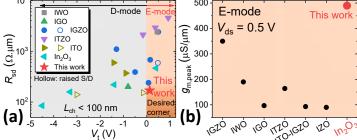
 $L_{\rm ch}$ (μm)

0.5

 $L_{\rm ch}$ (μm)

Fig. 4. Transfer characteristics for FETs with $W=5~\mu m$ and $L_{\rm ch}$ Fig. 8. (a) $R_{\rm sd}$ and (b) $R_{\rm sh}$ as a function of gate overdrive for devices with ranging from 40 to 970 nm at (a) $V_{\rm ds}=0.05~{\rm V}$ and (b) $V_{\rm ds}=0.5~{\rm V}$. different $W_{\rm sd}$, extracted using gated-TLM analyses as shown in Fig. 7. The Both log and linear scales are shown. A tight V_t distribution with nearbias-dependent component of $R_{\rm sd}$ ($R_{\rm B}$ in Fig. 12) is found to be proportional ideal S for all $L_{\rm ch}$ values demonstrates excellent electrostatic scaling.




Fig. 12. Netlist for MVS-AOS formulation. I_{DS} , C_{GS} and C_{GD} scale with L_{ch} following classic drift-diffusion theory. R_{B} , R_{C} , C_{ov} (S,D) and C_{par0} are attributed to the S/D regions, hence independent of L_{ch} r_{ov} (proportional to trap time constant) is a small-signal resistance to capture the C-V frequency dispersion due to the inertia of charge responding to high frequency signal in the trap-rich S/D regions.

 r_{ov} : small-signal R

C_{G(S,D)}: intrinsic channel C

$$\begin{aligned} &Q_{i(S,D)} = C_{inv} \cdot 2n\varphi_T \ln\left(1 + \exp\left(\frac{V_{GX(Si,Di)} - V_i}{2n\varphi_T}\right)\right) & (1) \quad I_{DS} = \mu \frac{W}{L} \frac{(Q_{cS}^2 - Q_{cD}^2)}{2C_{inv}} & (2) \quad S = n\varphi_T \ln(10) & (5) \\ &Q_{(S,D)} = \frac{2WL}{(Q_{cS}^2 - Q_{cD}^2)^2} \left[\mp Q_{i(D,S)}^2 \frac{Q_{cS}^3 - Q_{cD}^3}{3} \pm \frac{Q_{cS}^3 - Q_{cD}^3}{5}\right]; \quad C_{G(S,D)} = -\frac{\partial Q_{(S,D)}}{\partial V_{G(S,D)}} & (3) \quad \mu_{FE,i} \propto V_{ov}^{\theta_{FE}} & (6) \\ &Q_{ov(S,D)} = WC_{ovQB} \cdot n_{ov}\varphi_T \ln\left(1 + \exp\left(\frac{V_{G(S,D)} - V_{i,ov}}{n_{ov}\varphi_T}\right)\right); \quad C_{ov(S,D)} = \frac{\partial Q_{ov(S,D)}}{\partial V_{G(S,D)}} & (4) \quad R_B \propto V_{ov}^{\theta_{FE}} & (7) \end{aligned}$$

Fig. 13. Key equations for MVS-AOS. $Q_{i(S,D)}$: areal charge density at the (S,D) edge of the channel following [18]. $φ_T$: thermal voltage. S: subthreshold swing. C_{inv} : areal gate capacitance in the channel, including quantum effects [19]. V_t is the threshold voltage accounting for DIBL and trap-induced V_t shift. $Q_{(S,D)}$: S/D terminal charge. $θ_{(FE,R)}$ are fitting parameters. $C_{ov(S,D)}$ is computed similarly as $Q_{i(S,D)}$ with threshold voltage V_{tov} and includes the quantum effects through C_{ovQB} . Almost identical parameter set is used to fit devices with different L_{ch} at W=5 μm, with only minor adjustment of the S, DIBL, V_t and the unit-width overlap capacitances used to calculate C_{ovQB} .

Fig. 14, Benchmarking of (a) $R_{\rm sd}$ vs. $V_{\rm t}$ for short- $L_{\rm ch}$ AOS FETs and (b) Maximum $g_{\rm m,peak}$ achieved at $V_{\rm ds}=0.5$ V in E-mode FETs made of each AOS material [1-12,14-16,20-27]. $V_{\rm t}$ is defined @ 100 nA/ μ m.