Bias-Stress Instability in GaN Field-Effect Transistors

Jesús A. del Alamo and Alex Guo
Microsystems Technology Laboratories
Massachusetts Institute of Technology

MRS Spring Meeting
Phoenix, AZ, April 2-6, 2018

Acknowledgements:
• S. Warnock (MIT Lincoln Lab.), J. Franco (IMEC)
• Sponsors: MIT-MTL GaN Energy Initiative, NDSEG Fellowship
Application space for future power electronics

Important role for GaN power electronics in future
Favored structure: GaN MIS-HEMT

- MIS-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor

- High-mobility 2DEG at AlGaN/GaN interface
- Dielectric to suppress gate leakage current and increase gate swing
- On Si for low cost
Main concern with GaN MIS-HEMTs: reliability and stability

- Si substrate \rightarrow defects in GaN
- Multiple interfaces, many trapping sites
- Uncertain electric field distribution across gate stack
Bias-Temperature Instability (BTI)

Device stability during operation: key concern, particularly V_T

- $\text{Al}_2\text{O}_3/\text{AlGaN/GaN}$
- SiN/AlGaN/GaN
- $\text{HfO}_2/\text{AlGaN/GaN}$

Lagger, IEDM 2012
Zhang, SST 2014
Winzer, PSSa 2016
BTI in GaN MOSFETs

Simpler than MIS-HEMTs: single GaN/oxide interface

- Industrial prototype devices
- Gate dielectric: SiO$_2$/Al$_2$O$_3$ (EOT=40 nm)

Guo, IRPS 2015
Guo, IRPS 2016
Guo, TED 2017
Experimental methodology

Constant-V_{GS}, stress-interrupt experiments at RT:

1. **Device initialization** through thermal detrapping step
 - Minor impact: $\Delta V_T < 20$ mV, $\Delta S < 30$ mV/dec

2. **Stress and characterization**: measure V_T, peak g_m, S at $V_{DS}=0.1$ V
 - After 50 characterization runs: $\Delta V_T < 10$ mV, $\Delta g_m < 0.02$ mS/mm, $\Delta S < 15$ mV/dec

3. **Recovery phase** with terminals grounded and periodic characterization

4. **Final thermal detrapping**
Threshold voltage evolution

- PBTI: $V_{GS,\text{stress}}>0 \rightarrow \Delta V_T>0$
- NBTI: $V_{GS,\text{stress}}<0 \rightarrow \Delta V_T<0$
- $|\Delta V_T|$ increases with stress voltage and time
- Fully recoverable \rightarrow no defect generation

Guo, TED 2017
Transconductance evolution

• PBTI: $V_{GS,\text{stress}}>0 \rightarrow g_{m,\text{max}} \downarrow$
• NBTI: $V_{GS,\text{stress}}<0 \rightarrow g_{m,\text{max}} \uparrow$
• $|\Delta g_m|$ increases with stress voltage and time
• Fully recoverable \rightarrow no defect generation

Guo, TED 2017
Subthreshold swing evolution

- **PBTI**: $V_{GS, stress} > 0 \rightarrow S$ unchanged
- **NBTI**: $V_{GS, stress} < 0 \rightarrow S$ unchanged
- No interface state generation
Correlation between ΔV_T and Δg_m

- Good correlation between PBTI and NBTI during stress and recovery
- One physical mechanism, fully reversible

Guo, TED 2017
Functional dependence of V_T

V_T well described by *power-law function*:

$$\Delta V_T \propto (V_{GS,\text{stress}} - V_{T0})^\gamma t_{\text{stress}}^n$$

Consistent with electron trapping/detrapping in oxide

Guo, TED 2017
PBTI/NBTI: Recoverable electron trapping/detrapping in oxide
PBTI/NBTI: Recoverable electron trapping/detrappping in oxide
PBTI/NBTI: Recoverable electron trapping/detrapping in oxide
PBTI/NBTI: Recoverable electron trapping/detrapping in oxide
PBTI/NBTI: Recoverable electron trapping/detrapping in oxide
PBTI in HfO₂/InGaAs system

Cai, IEDM 2016
Oxide trapping in other high-k/MOS systems

Al$_2$O$_3$/Si

\[\Delta V_t (V) \]

\[10^{-3} - 10^{-1} \]

\[10^{2} \]

\[10^{3} - 10^{5} \]

\[\text{time (sec)} \]

- Zafar, TDMR 2005
- Wu, IEDM 2005
- Franco, IRPS 2014
- Franco, IEDM 2017
Oxide trapping in other high-k/MOS systems

\(\text{Al}_2\text{O}_3/\text{Si} \)

\(\Delta V_f (V) \)

\[\begin{align*}
\text{time (sec)} &
\end{align*} \]

\(10^{-3} \)

\(10^{-2} \)

\(10^{-1} \)

\(10 \)

\(1.5 \text{ V, 140 }^\circ\text{C} \)

\(2.0 \text{ V, 25 }^\circ\text{C} \)

\(1.5 \text{ V, 25 }^\circ\text{C} \)

\(1.0 \text{ V, 25 }^\circ\text{C} \)

\(\text{Zafar, TDMR 2005} \)

\(\text{HfO}_2/\text{Si} \)

\(\Delta V_f (V) \)

\[\begin{align*}
\text{time (sec)} &
\end{align*} \]

\(10^{2} \)

\(10^{3} \)

\(10^{4} \)

\(10^{5} \)

\(10^{6} \)

\(25 \text{ C} \)

\(\text{Zafar, TDMR 2005} \)
Oxide trapping in other high-k/MOS systems

$\text{Al}_2\text{O}_3/\text{Si}$

$\text{Al}_2\text{O}_3/\text{InGaAs}$

HfO_2/Si

HfO_2/Ge

Zafar, TDMR 2005

Franco, IRPS 2014

Franco, IEDM 2017

Wu, IEDM 2005
Oxide trapping in other high-k/MOS systems

- **Al₂O₃/Si**
 - Zafar, TDMR 2005

- **Al₂O₃/InGaAs**
 - Franco, IRPS 2014

- **HfO₂/Ge**
 - Wu, IEDM 2005

- **HfO₂/Si**
 - Zafar, TDMR 2005

Franco, IEDM 2017
Oxide trapping in other high-k/MOS systems

- **Al₂O₃/Si**
 - Zafar, TDMR 2005

- **Al₂O₃/InGaAs**
 - Franco, IRPS 2014

- **HfO₂/Ge**
 - Wu, IEDM 2005
 - Franco, IEDM 2017
What are these defects?

Prime suspect: O vacancies

Formation energy of O vacancies:

Al$_2$O$_3$/GaN band alignment:

Defect states in Al$_2$O$_3$ right above conduction gand edge of GaN

Liu, APL 2010
What are these defects?

Prime suspect: O vacancies

Formation energy of O vacancies:

$$\text{Al}_2\text{O}_3/\text{GaN band alignment:}$$

Defect states smear into bands in amorphous material

Liu, APL 2010
How to mitigate?
How to mitigate? Look at CMOS literature
How to mitigate? Look at CMOS literature

AC BTI more benign
Krishnan, IRPS 2012
How to mitigate? Look at CMOS literature

- AC BTI more benign
 Krishnan, IRPS 2012

- Introduce SiON interfacial layer
 Cartier, IEDM 2011

- Reduce IG
 Krishnan, IRPS 2012

- Reduce high-k thickness
 Cartier, IEDM 2011

- Short, high-T anneal
 Franco, IRPS 2017

- LaSiO interlayer
 Franco, IRPS 2017
How to mitigate? Look at CMOS literature

- AC BTI more benign
 Krishnan, IRPS 2012

- Introduce SiON interfacial layer
 Cartier, IEDM 2011

- Reduce high-k thickness
 Cartier, IEDM 2011
How to mitigate? Look at CMOS literature

- **AC BTI more benign**
 Krishnan, IRPS 2012

- **Introduce SiON interfacial layer**
 Cartier, IEDM 2011

- **Reduce high-k thickness**
 Cartier, IEDM 2011

- **Short, high-T anneal**
 Franco, IRPS 2017
How to mitigate? Look at CMOS literature

- AC BTI more benign
 Krishnan, IRPS 2012

- Short, high-T anneal
 Franco, IRPS 2017

- Introduce SiON interfacial layer
 Cartier, IEDM 2011

- Reduce high-k thickness
 Cartier, IEDM 2011

- Reduce IG
 Krishnan, IRPS 2012

- Reduce high-k thickness
 Cartier, IEDM 2011

- Introduce LaSiO interlayer
 Franco, IRPS 2017
How to mitigate? Look at CMOS literature

- **AC BTI more benign**
 Krishnan, IRPS 2012

- **Introduce SiON interfacial layer**
 Cartier, IEDM 2011

- **Reduce high-k thickness**
 Cartier, IEDM 2011

- **Short, high-T anneal**
 Franco, IRPS 2017

- **LaSiO interlayer**
 Franco, IRPS 2017

- **Reduce I_G**
 Krishnan, IRPS 2012
NBTI under harsher stress

Guo, IRPS 2016

- Three regimes: Negative $\Delta V_T \rightarrow$ positive $\Delta V_T \rightarrow$ negative ΔV_T
- Permanent negative ΔV_T after final thermal detrapping
Three regimes:
- Negative $\Delta V_T \rightarrow$ positive $\Delta V_T \rightarrow$ negative ΔV_T
- Permanent negative ΔV_T after final thermal detrapping

Trapping in GaN channel under gate edge (recoverable)

Guo, IRPS 2016
NBTF under harsher stress

High-voltage and high-temperature stress:

- Three regimes: Negative $\Delta V_T \rightarrow$ positive $\Delta V_T \rightarrow$ negative ΔV_T
- Permanent negative ΔV_T after final thermal detrapping
Conclusions

• PBTI and NBTI (benign stress):
 – recoverable ΔV_T, Δg_m due to electron trapping/detrapping in pre-existing oxide traps
 – Experimental observations well described by oxide trapping model

• Many avenues for mitigation \rightarrow study Si high-k/MOS literature

• New degradation physics under harsher stress (NBTI):
 – recoverable ΔV_T>0, ΔS due to electron trapping in substrate
 – non-recoverable ΔV_T<0, Δg_m, ΔS due to interface state formation