

InGaAs Double-Gate Fin-Sidewall MOSFET

<u>Alon Vardi</u>, Xin Zhao and Jesús del Alamo *Microsystems Technology Laboratories, MIT* June 25, 2014

> Sponsors: Sematech, Technion-MIT Fellowship, and NSF E3S Center (#0939514)

Outline

- Motivation
- Process technology
- Results and analysis
- Conclusions

Motivation

- III-V MOSFET for sub 10 nm CMOS
- Outstanding planar devices, but need tighter channel control through 3D designs
- Concerns about nano-structure sidewall fabricated by RIE
- Curing of plasma etching damage: forming gas annealing, digital etch

Key technologies

 BCl₃/SiCl₄/Ar RIE of InGaAs nanostructures with smooth, vertical sidewall and high aspect ratio (>10).

Digital etch (DE): self-limiting O₂ plasma oxidation + H₂SO₄ oxide removal

Zhao, EDL 2014

- Shrinks fin width by 2 nm per cycle
- Unchanged shape
- Reduced roughness

Lin, EDL 2014

As etched \rightarrow 5 cycles DE

InGaAs finFET process flow

InGaAs finFETs

- Typical device consists of 100 fins, $L_g=5 \mu m$
- Process splits:
 - Number of digital etch cycles: 1, 2 and 4
 - HfO_2 vs. Al_2O_3 (same EOT of 4 nm)
 - w/ and w/o forming gas anneal (FGA): 30 min, 400°C

Electrical Characteristics

- Current normalized to active layer thickness (100 nm) and number of fins
- Good electrostatic control over fin sidewalls

•
$$W_f \uparrow \rightarrow V_t \downarrow$$

Subthreshold characteristics

- ,W,=37 nm 800 [comp/dec] 400 200 600 W_f=12 nm 0 -0.5 -1.0 0.0 0.5 1.0 V_{GS} [V] 800 ² 600 400 200 S 600 0 20 25 30 35 15 10 40 W_f [nm] 8
- Subthreshold characteristics unrelated to I_G and governed by D_{it} on fin sidewalls

S_{min} : Al_2O_3 vs. HfO_2

- Narrow $W_f : S_{min}(HfO_2) \cong S_{min}(Al_2O_3)$
- Wide $W_f : S_{min}(HfO_2) > S_{min}(Al_2O_3)$

S_{min}: Effect of forming gas annealing

• FGA \rightarrow S \downarrow at all W_f on both oxides

S_{min}: Effect of digital etching

- Narrow W_f: S not affected by digital etch
- Wide W_f : #DE cycles $\uparrow \rightarrow S_{min} \downarrow$

Simulations: Ideal interface

• $D_{it}=0 \rightarrow S_{min}=60 \text{ mV/dec}$, independent of W_f

Simulations: uniform D_{it} across bandgap

- $D_{it} > 0$ (uniform) $\rightarrow S_{min} = 60 \left(1 + \frac{qD_{it}}{C_{ox}}\right)$, independent of W_f
- Onset of inversion shifts to negative voltage (stretch out)

Simulations: D_{it} rising toward VB

- D_{it} rising towards VB: $W_f \uparrow \rightarrow S_{min} \uparrow$
- S_{min} for different W_f probe D_{it} at different locations in the band gap

- $W_f \uparrow \rightarrow |\phi_t| \uparrow \rightarrow |V_t| \uparrow$ (negative V_t shift)
- $W_f \uparrow \rightarrow S_{min}$ probe D_{it} closer to VB

Effect of Oxide type on D_{it} profile

• Al₂O₃ yield better D_{it} than HfO₂in lower part of bandgap

Effect of FGA on D_{it} profile

• FGA reduces D_{it} everywhere in bandgap

Effect of DE on D_{it} profile

• DE reduces D_{it} in lower part of bandgap

Towards a more detailed analysis: Mobility extraction

- Mobility is 5-7 times smaller than expected
- $W_f \downarrow \rightarrow \mu \downarrow \rightarrow$ sidewall scattering
- From I_D and $\mu \rightarrow$ extract n_f

Fitting of D_{it} profile

E-E, [eV]

Comparison to planar structures

Al₂O₃/InGaAs

 D_{it} distribution on properly prepared dry etched sidewalls approaches that of planar structures

Conclusions

- Study of D_{it} on dry etched nano-structure sidewalls
- U shape D_{it} distribution as in planar MOSFETs
- FGA reduces D_{it} everywhere while DE lowers D_{it} toward the valence band
- HfO₂ and Al₂O₃ give comparable results near CB, but rise of D_{it} toward VB stronger for HfO₂

• With all treatments, D_{it} level approaches level obtained on planar structures