

Role of Electrochemical Reactions in the Degradation Mechanisms of AlGaN/GaN HEMTs

Feng Gao ^{1,2}, Bin Lu ², Carl V. Thompson ¹, Jesús del Alamo ², Tomás Palacios ²

- 1. Department of Materials Science and Engineering, Massachusetts Institute of Technology
- 2. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

This project is partially funded by the ONR DRIFT MURI program.

Introduction

• AIGaN/GaN HEMTs unique properties

Wide bandgap $\rightarrow E_{critical} > 3MV/cm$ Polarization $\rightarrow 2DEG$ density $> 10^{13}/cm^2$ High electron mobility: $> 1500 \text{ cm}^2/\text{V}\cdot\text{s}$ High electron peak velocity: $2.1 \times 10^7 \text{ cm/s}$

Excellent for High Power RF & Power Electronics Applications

Wireless Base Station

Energy Conversion

Automotive Electronics

fenggao@mit.edu

Motivation

— Reliability Bottleneck

 Device reliability is one of the greatest obstacles for AlGaN/GaN HEMTs: various degradation modes

microsystems technology laboratories

fenggao@mit.edu

Motivation

- Overview of Reliability Phenomena

Permanent Degradation

Surface Pitting

U. Chowdhury et al., *IEEE Electron Dev. Lett*, vol. 29, no.10, 2008.

P. Makaram et al., *Appl. Phys. Lett.*, 96, 233509, 2010.

J. Joh et al., IEEE Electron Dev. Lett., vol. 29, no. 4, 2008.

fenggao@mit.edu

Motivation

- Overview of Reliability Mechanisms

- Physical mechanism in permanent degradation
 - Inverse Piezoelectric Effects

J. Joh et al., *IEDM 2007. IEEE International*, 2007, pp. 385–388.

Defect Percolation

M. Meneghini et al., *Appl. Phys. Lett.*, vol. 100, no. 3, p. 033505, 2012.

fenggao@mit.edu

Goals of This Work

Water-Assisted Electrochemical Mass Transport in Permanent Degradation

□ Electrochemical Reaction Mechanism:

- Holes generation
- Water Diffusion

fenggao@mit.edu

AlGaN/GaN HEMTs Under Study

• Device provided by industrial collaborator

fenggao@mit.edu

Experimental Setup

- High Vacuum and High Temperature Probe Station

Key features:

- Vacuum chamber of 1 × 10⁻⁷ Torr.
- Thermal chuck up to 600 °C.
- Four probes for electrical contact.
- Two gas lines that can supply the chamber with air, O₂, N₂, Ar, He and H₂.

Acknowledgement to Prof. Harry L. Tuller

Impact of Atmosphere on Surface Pitting

— Ambient and Vacuum Control-Group

• Off-state stress test: V_{ds} = 43 V, V_{gs} = -7 V for 3000s in darkness at RT

Surface pitting caused by OFF-state electrical stress is significantly reduced in vacuum.

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Role of Oxygen in Surface Pitting

a)

TEM

— Ambient and Vacuum Control-Group

TEM EDX

Pitting Area

Stressed in ambient air

Stressed in vacuum of 1×10⁻⁷ Torr

PtIAu Ga Counts (a.u.) Gate 60 20 40 Position (nm) Pitting Area b) PtIAu Counts (a.u.) Gate 3 nm AIGa 20 60 80 Position (nm)

Higher concentration of oxygen (O) is found inside the surface pits for AIGaN/GaN HEMTs stressed in ambient air.

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Influence of Ambient Air

Off-state stress

- Ambient air → more pits with deeper depther
- Ambient air → increase of oxygen in pitting area
 Ambient air has N₂, O₂, H₂O, CO₂

What gas in the ambient air causes:

- surface pitting?
- increasing of oxygen concentration in pitting area?

Impact of Moisture on Surface Pitting

— Wet and Dry Control-Group

wet/dry Ar; wet/dry O₂; wet/dry N₂; wet/dry CO₂; wet/dry Air

Water has a major impact on surface pitting & source of O in pitting area

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Mass Transport

TEM EDX mapping: Ga and AI found in the gate region

TEM EDX Mapping

13

- Ga, Al migration

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Permanent Electrical Degradation

— By Off-State Stress

14

• Off-state stress: $V_{gs} = -7V$, $V_{ds} = 43V$, 3000s at RT in dark

- 1min UV illumination & 12hr at rest after Off-state to recover trapping transient
- I_{dss} and I_{q} measured at V_{qs} = 0, V_{ds} =5V

Permanent Electrical Degradation

- Surface Pitting Time Evolution

stems technology laboratories

fenggao@mit.edu

Permanent Electrical Degradation

— I_d Degradation Time Evolution

• Time Evolution of Drain Current Degradation: Id measured at $V_{gs} = 0$ and $V_{ds} = 5$ V

Drain current degradation evolves with the growth of the surface pits over stress time.

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Summary 1

□ $H_2O \rightarrow$ surface pitting and source of oxygen in pitting area

- □ Ga, AI migration accompanies surface pitting
- \Box Surface pitting & Ga, AI migration \rightarrow permanent electrical degadation

What is the physical mechanism behind the impact of H₂O on the surface pitting ?

fenggao@mit.edu

Water-assisted Electrochemical Reactions — Corrosion in AlGaN/GaN HEMTs

An electrochemical cell

formed at the drain edge

Gate

(Cathode)

10 nm

18

AlGaN

(Anode)

- ***** Reduction of water:
 - $2H_2O + 2e^- = 2OH^- + H_2$
- Anodic oxidation of AlGaN:
 - $2AI_x Ga_{1-x}N + 6h^+ = 2xAI^{3+} + 2(1-x)Ga^{3+} + N_2$

 $2xAl^{3+} + 2(1-x)Ga^{3+} + 6OH^{-} = xAl_2O_3 + (1-x)Ga_2O_3 + 3H_2O_3$

Complete Reduction-oxidation (redox) electrochemical reactions:

 $2AI_{x}Ga_{1-x}N + 3H_{2}O = xAI_{2}O_{3} + (1-x)Ga_{2}O_{3} + N_{2} + H_{2}$

of the gate.

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Water-assisted Electrochemical Reactions — Ga, Al out diffusion

Two necessary conditions:

- 1. Holes are generated and accumulated at the AlGaN surface.
- 2. Ambient water diffuse through the SiN_x passivation and reach the AlGaN surface.

— Photo-Generated Holes

20

- Stressed under 254-nm UV illumination in ambient air at V_{ds} = 43 V V_{gs} = -7 V for 3000s at RT

Increasing surface pitting

SEM Top View

— Impact Ionization vs Inter-band Tunneling

- Quantitative Analysis: E-field

Silvaco simulation of Electric Field in AlGaN Layer

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

— Quantitative Analysis: j_h

Relationship of Surface Pits and Holes

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

— Surface Pitting and Holes

- Data match with inter-band tunneling equation
- Data do not match with impact ionization equation

— Trap-assited inter-band Tunneling

Traps assist inter-band tunneling causing a lower E_t

Traps assist inter-band tunneling

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Trap Assisted Inter-Band Tunneling — TCAD Simulations

TCAD simulation of trap-assisted inter-band tunneling

Donor trap states w. $E_c - E_t = 0.45 \text{eV}$, $N_t = 5 \times 10^{18} / \text{cm}^3$ $V_{ds} = 43 \text{ V}$, $V_{qs} = -7 \text{ V}$

stems technology laboratories (Hug

Acknowledgement to our collaborators: Hiu-Yung (Hugh) Wong, Ph.D et al at Synopsys, Inc.

fenggao@mit.edu

Last Question: Diffusion of Water

- Water Vapor Transmission Rate

Water Vapor Transmission Rate (WVTR) of PECVD SiN

 $2AI_x Ga_{1-x}N + 3H_2O$ = $xAI_2O_3 + (1-x)Ga_2O_3 + N_2 + H_2$

 $WVTR \approx \frac{3}{2} \frac{d\rho M_{H_2O}}{Mt}$

≈ 0.05-0.1 g/m²/day

Estimated WVTR is consistent with the reported value for PECVD SiN (0.01-0.1 g/m²/day) in literature [1-2].

[1] A.S. da Silva Sobrinho, et al. J. Vac. Sci. Technol. A, vol. 16, no. 6, pp. 3190-3198, 1998.
[2] D.S. Wuu, et al. Surf. Coat. Technol., vol. 198, no.1-3, pp. 114-117, 2004. Degradation of SiN Passivation

Stressed in wet air

Stressed in dry air

Stressed in ambient air

Stressed in vacuum

Defects are created in SiN during off-state stress to accelerate water diffusion. 27

Conclusion

Mechanisms of Permanent Degradation

A Water-assisted Field-induced Electrochemical Process

 $2AI_{x}Ga_{1-x}N + 3H_{2}O = xAI_{2}O_{3} + (1-x)Ga_{2}O_{3} + N_{2} + H_{2}$

- Cause surface pitting & Ga, AI migration
- Cause permanent I_d drop

ems technology laboratories

fenggao@mit.edu

Thank You!

God made the bulk; surfaces were invented by the devil.

— Wolfgang Pauli

fenggao@mit.edu

Is There Impact Ionization ?

• Holes are swept to the source-edge of the gate

F. Gao et al., IEEE Trans. Electron Devices, vol. 61, no.2, 2014 fenggao@mit.edu

Why is there still pits in devices stressed in vacuum ?

Water desorption requires vacuum annealing with T > 200 °C

In-situ XPS Analysis

fenggao@mit.edu

