Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

<u>Xin Zhao</u>, Jianqiang Lin, Christopher Heidelberger, Eugene A. Fitzgerald and Jesús A. del Alamo

Microsystems Technology Laboratories, MIT

December 11, 2013

Sponsors: NSF Award #0939514 (E3S STC) Fabrication: MTL, SEBL at MIT

Outline

- Motivation
- Device technology
- Device electrical characteristics
- Conclusions

Motivation

Superior electron transport properties of InGaAs material system – high mobility and electron velocity

del Alamo, Nature 2011

Gate-all-around (GAA) nanowire MOSFETs

Kuhn, TED 2012

Nanowire MOSFET provides ultimate scalability

Vertical channel MOSFETs

Vertical nanowire decouples footprint scaling and gate length scaling \rightarrow high density

• Use of vertical FETs saves 40% of total chip area

Bottom-up approach

Impressive devices via bottom-up techniques demonstrated

 Complicated epitaxial growth or Au seed particles required

Tanaka, APEX 2010

Tomioka, Nature 2012

Top-down approach worth investigating!

Goal: vertical nanowire InGaAs MOSFETs fabricated via top-down approach

Starting heterostructure:

n+ InGaAs, 70 nm

i InGaAs, 80 nm

n+ InGaAs, 300 nm

n+: 6×10^{19} Si doping

Key elements:

- Top-down approach based on RIE
- Single nanowire MOSFETs

Key enabling technology: RIE by BCl₃/SiCl₄/Ar Chemistry

- Sub-20 nm resolution
- Aspect ratio > 10
- Smooth sidewall and surface
- BCl₃/SiCl₄/Ar RIE chemistry used for III-V optical devices, never used for nm-scale features

Critical parameter: Substrate temperature during RIE

 $T \uparrow \rightarrow$ etch rate \uparrow , surface roughness \downarrow , sidewall verticality \uparrow

Nanowire RIE followed by digital etch

Digital etch:

Lin, IEDM 2012

self-limiting O₂ plasma oxidation + H₂SO₄ oxide removal

- Shrinks NW diameter by 2 nm per cycle
- Unchanged shape
- Reduced roughness

Planarization and etch back

After 1st planarization

NW-MOSFET I-V characteristics D= 30 nm

200

(un150) M1/201

50

g_{m, pk}(V_{ds}=0.5 V)

=280 µS/µm

Single nanowire MOSFET:

- D= 30 nm
- L_{ch}= 80 nm
- 4.5 nm Al₂O₃ (EOT = 2.2 nm)

At V_{DS}=0.5 V (normalized by periphery):

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 V_{gs} (V)

V_{ds}=0.5 V

- g_{m,pk}=280 μS/μm
- R_{on}=759 Ω.μm

300

100 ත්

50

D=30 nm InGaAs NW-MOSFETs

D=50 nm InGaAs NW-MOSFET

At V_{ds} =0.5 V:

- g_{m,pk}=730 μS/μm
- R_{on}=310 Ω.μm

D=50 nm InGaAs NW-MOSFETs

Impact of nanowire diameter

Impact of digital etch

- Fundamental trade-off between transport and short-channel effects
- Top-down NW-MOSFETs as good as bottom up devices

Conclusions

- First demonstration of top-down III-V GAA NW-MOSFET with vertical channel
 - Novel III-V RIE process with sub-20 nm resolution
 - 30 nm diameter NW MOSFET achieved
- Digital etch improves subthreshold and transport characteristics
- Device performance matches that of best bottom-up vertical NW III-V MOSFETs

Acknowledgement

- NSF E3S
- Fabrication facility at MIT labs: MTL, SEBL
- MIT colleagues: T. Yu, L. Guo, W. Chern, A. Vardi, L. Xia, D. Antoniadis, J. Hoyt, D. Jin, A. Guo, S. Warnock, W. Lu, Y. Wu, J. Teherani
- E3S colleagues: A. Lakhani, S. Agarwal, M. Eggleston, E. Yablonovitch, M. Wu