Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

J. A. del Alamo

Microsystems Technology Laboratories, MIT

ESSDERC-ESSCIRC 2013

Bucharest, Romania, September 16-20, 2013

Acknowledgements:

- D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia
- Sponsors: Intel, FCRP-MSD, ARL, SRC
- Labs at MIT: MTL, NSL, SEBL

Outline

- 1. InGaAs HEMT today
- 2. InGaAs HEMTs towards THz operation
- InGaAs MOSFETs: towards sub-10 nm
 CMOS

A bit of perspective...

- Invention of AIGaAs/GaAs HEMT: Fujitsu Labs. 1980
- First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982
- First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985
- Main attraction of InGaAs: RT μ_e = 6,000~30,000 cm²/V.s

Mimura, JJAPL 1980

Chen, EDL 1982

Ketterson, EDL 1985

InGaAs Electronics Today

TriQuint and Skyworks Power iPhone 5

UMTS-LTE PA module Chow, MTT-S 2008

40 Gb/s modulator driver Carroll, MTT-S 2002

77 GHz transceiver Tessmann, GaAs IC 1999

Single-chip WLAN MMIC, Morkner, RFIC 2007

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

InGaAs High Electron Mobility Transistor (HEMT)

Modulation doping:

→ 2-Dimensional Electron Gas at InAlAs/InGaAs interface

InGaAs HEMT: high-frequency record vs. time

- Highest f_T of any FET on any material system
- Best balanced f_T and f_{max} of any transistor on any material

InGaAs HEMTs: circuit demonstrations

10-stage 670 GHz LNA

Leong, IPRM 2012

Sarkozy, IPRM 2013

80 Gb/s multiplexer IC

Wurfl, GAAS 2004

6-stage 600 GHz LNA

Tessmann, CSICS 2012

InGaAs HEMTs on InP used to map infant universe

WMAP=*Wilkinson Microwave Anisotropy Probe* Launched 2001

http://map.gsfc.nasa.gov/

0.1 µm InGaAs HEMT LNA Pospieszalski, MTT-S 2000

Full-sky map of Cosmic Microwave
Background radiation (oldest light in Universe)
→ age of Universe: 13.73B years (±1%)

A closer look: InGaAs HEMTs at MIT

Kim, EDL 2010

QW channel ($t_{ch} = 10$ nm):

- InAs core
- InGaAs cladding
- $\mu_e = 13,200 \text{ cm}^2/\text{V-sec}$
- InAlAs barrier ($t_{ins} = 4 \text{ nm}$)
- $L_g = 30 \text{ nm}$

L_g=30 nm InGaAs HEMT

- High transconductance: $g_m = 1.9 \text{ mS/}\mu\text{m}$ at $V_{DD} = 0.5 \text{ V}$
- First transistor of any kind with both f_T and $f_{max} > 640$ GHz

How to reach $f_T = 1$ THz?

 $f_T = 1$ THz feasible by:

→ scaling to $L_g \approx 25$ nm → ~30% R and C parasitic reduction

Record f_T InGaAs HEMTs: megatrends

- Over time: L_g↓, In_xGa_{1-x}As channel x_{InAs}↑
- L_g , x_{InAs} saturated \rightarrow no more progress possible?

Record f_T InGaAs HEMTs: megatrends

- Over time: $t_{ch}\downarrow$, $t_{ins}\downarrow$
- t_{ch} , t_{ins} saturated \rightarrow no more progress possible?

Limit to HEMT barrier scaling: gate leakage current

At L_g=30-40 nm, modern HEMTs are at the limit of scaling!

Solution: MOS gate!

Need high-K gate dielectric: **HEMT** → **MOSFET!**

InGaAs MOSFETs with f_T=370 GHz (Teledyne/MIT/IntelliEpi/Sematech)

Historical evolution: InGaAs MOSFETs vs. HEMTs

Progress reflects improvements in oxide/III-V interface

What made the difference? Oxide/III-V interfaces with unpinned Fermi level by ALD

ALD eliminates surface oxides that pin Fermi level:

- First observed with AI_2O_3 , then with other high-K dielectrics
- First seen in GaAs, then in other III-Vs

"Self cleaning"

 Clean, smooth interface without surface oxides

Huang, APL 2005

Interface quality: Al₂O₃/InGaAs vs. Al₂O₃/Si

Close to E_c , AI_2O_3 /InGaAs comparable D_{it} to AI_2O_3 /Si interface

InGaAs n-MOSFET: best candidate for post-Si CMOS

Si CMOS scaling seriously stressed

→ Moore's law threatened

CMOS scaling in the 21st century

Si CMOS has entered era of *"power-constrained scaling"*:

→ Microprocessor power density saturated at ~100 W/cm²

Future scaling demands $V_{DD}\downarrow$

How to enable further V_{DD} reduction?

I_{off}

• Transistor is switch:

- reduce transistor footprint
- reduce V_{DD}
- extract maximum I_{ON} for given I_{OFF}
- The path forward:
 - − increase electron velocity \rightarrow I_{ON} ↑
 - tighten electron confinement \rightarrow S \downarrow \rightarrow use InGaAs!

Electron injection velocity: InGaAs vs. Si

Measurements of electron injection velocity in HEMTs:

- v_{ini}(InGaAs) increases with InAs fraction in channel
- $v_{inj}(InGaAs) > 2v_{inj}(Si)$ at less than half V_{DD}
- ~100% ballistic transport at L_a~30 nm

L_g=30 nm InGaAs HEMT – Subthreshold characteristics

- S = 74 mV/dec
- Sharp subthreshold behavior due to tight electron confinement in quantum well

L_g=30 nm InGaAs HEMT – Subthreshold characteristics

- S = 74 mV/dec
- At I_{OFF} =100 nA/µm and V_{DD} =0.5 V, I_{ON} =0.52 mA/µm

InGaAs HEMTs: Benchmarking with Si

FOM that integrates short-channel effects and transport: I_{ON} @ I_{OFF} =100 nA/µm, V_{DD} =0.5 V

InGaAs HEMTs: higher I_{ON} for same I_{OFF} than Si

InGaAs MOSFET: possible designs

Recessed S/D QW-MOSFET

Trigate MOSFET

Regrown S/D QW-MOSFET

Nanowire MOSFET

Self-Aligned InGaAs QW-MOSFETs (MIT)

- Scaled barrier (InP: 1 nm + HfO₂: 2 nm)
- 10 nm thick channel with InAs core
- Tight S/D spacing (L_{side}~30 nm)
- Process designed to be compatible with Si fab

Lin, IEDM 2012

L_g=30 nm Self-aligned QW-MOSFET

At $V_{DS} = 0.5$ V:

- g_m = 1.4 mS/µm
- S = 114 mV/dec
- $R_{ON} = 470 \ \Omega.\mu m$

Lin, IEDM 2012

Scaling and benchmarking

- Superior behavior to any planar III-V MOSFET to date
- Matches performance of Intel's InGaAs Trigate MOSFETs [Radosavljevic, IEDM 2011]

Sharp Subthreshold Characteristics

- From: Aggressively scaled barrier
 - High quality interface: gate last process

- S = 69 mV/dec at V_{DS} = 50 mV
- Close to lowest S reported in any III-V MOSFET: 66 mV/dec [Radosavljevic, IEDM 2011]

Regrown source/drain InGaAs QW-MOSFET on Si (HKUST)

- MOCVD epi growth on Si wafer
- n⁺-InGaAs raised source/drain
- Self-aligned to gate
- Composite barrier:

InAlAs (10 nm) + Al_2O_3 (4.6 nm)

Zhou, IEDM 2012

Characteristics of L_g=30 nm MOSFET

At V_{DS} =0.5 V:

- g_m = 1.7 mS/µm
- S = 186 mV/dec
- R_{ON} = 157 Ω.µm

Zhou, IEDM 2012

Multiple-gate MOSFETs

gates $\uparrow \rightarrow$ improved electrostatics \rightarrow enhanced scalability

InGaAs Trigate MOSFET (Intel)

Improved S over planar MOSFET on same heterostructure

InGaAs Nanowire MOSFETs

Conclusions: exciting future for InGaAs

 Most promising material for ultra-high frequency and ultra-high speed applications

 \rightarrow first THz transistor?

- Most promising material for n-MOSFET in a post-Si CMOS logic technology
 → first sub-10 nm CMOS logic?
- InGaAs + Si integration:

 \rightarrow THz + CMOS + optics integrated systems?