Nanometer-Scale III-V CMOS

J. A. del Alamo

Microsystems Technology Laboratories, MIT

Short Course on The Future of Semiconductor Devices and Integrated Circuits

34th IEEE Compound Semiconductor IC Symposium

Oct. 14th, 2012

Acknowledgements:

- D. Antoniadis, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia
- Sponsors: Intel, FCRP-MSD
- Labs at MIT: MTL, NSL, SEBL

Outline

- 1. The CMOS revolution
- 2. Materials options for post-Si CMOS
- 3. What have we learned from III-V HEMTs?
- 4. III-V CMOS device design and challenges
 - Critical issue #1: the gate stack
 - Critical issue #2: the ohmic contacts
 - Critical issue #3: the p-channel device
 - Critical issue #4: non-planar MOSFET designs
 - Critical issue #5: co-integration of nFETs and pFETs
- 5. Concluding remarks

1. The CMOS Revolution: Smaller is Better!

Virtuous cycle of scaling \rightarrow exponential improvements in:

- Transistor density ("Moore's law")
- Performance
- Power efficiency

The Si CMOS Revolution: *Smaller is Better!*

Koomey, Ann. Hist. Computing 2011

CMOS scaling in the 21st century

Si CMOS has entered era of "power-constrained scaling":

- Microprocessor power density saturated at ~100 W/cm²
- Microprocessor clock speed saturated at ~ 4 GHz

Pop, Nano Res 2010

Consequences of Power Constrained Scaling

→ Transistor scaling requires reduction in supply voltage

CMOS power supply scaling

Dewey, IEDM 2009

→ Need scaling approach that allows V_{DD} reduction while enhancing performance

How to enable further V_{DD} reduction?

- Goals of scaling:
 - reduce transistor footprint

How to enable further V_{DD} reduction?

- Goals of scaling: ullet
 - reduce transistor footprint

- The path forward:
 - increasing electron velocity → I_{ON} ↑
 tighter carrier confinement → S↓

2. Materials options for post-Si CMOS

Ideally want:

- High electron and hole velocity
 - Si: $v_e \sim 1.5 \times 10^7$ cm/s, $v_h \sim 1.2 \times 10^7$ cm/s
- High sheet-carrier concentration at low voltage
 - Si: ~6x10¹² cm⁻² @1 V
- High enough bandgap energy
 - Si: E_g=1.1 eV
- High-quality, reliable MOS gate stack
 - Si: D_{it}~10¹¹ eV⁻¹.cm⁻²
- Same material for n-channel and p-channel device
- Easily integrable on Si substrate
- Manufacturable technology (top down, ex-situ dielectrics)

Bandgap energy

InAs, InSb problematic but strong quantum confinement can be used to enhance effective bandgap

Use mobility as proxy for velocity

300 K quantum-well or inversion layer mobility at any sheet carrier concentration:

The role of compressive biaxial strain

What about ternary III-Vs?

D_{it} close to band edges

Buried-channel structures still possible for narrow-bandgap materials but need to provide appropriate band discontinuity

Options for post-Si CMOS

InGaAs nFET
InP nFET
Ge nFET
InGaSb pFET
Ge pFET

Different lattice constants for n-channel and p-channel devices (except for Ge)

3. What have we learned from III-V HEMTs?

The High Electron Mobility Transistor is now >30 years old!

Mimura, JJAPL 1980

PHEMT ICs

Saturday, February 26, 2011 TriQuint and Skyworks Power iPhone 5

UMTS-LTE PA module Chow, MTT-S 2008

40 Gb/s modulator driver Carroll, MTT-S 2002

77 GHz transceiver Tessmann, GaAs IC 1999

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

PHEMT MMIC market=\$1.2B in 2011 18

Single-chip WLAN MMIC, Morkner, RFIC 2007

Near-THz III-V FETs

- For >20 years, record f_T obtained on InGaAs-channel HEMTs
- InGaAs-channel HEMTs offer record of balanced f_T and f_{max 19}

III-V HEMTs: excellent model system to explore logic suitability of III-Vs

Gate Gate Oxide Oxide Cap Etch stopper Barrier Barrier Barrier Barrier

State-of-the-art: InAs HEMTs

Kim, EDL 2010

- QW channel (t_{ch}=10 nm):
 - InAs core $(t_{InAs} = 5 \text{ nm})$
 - InGaAs cladding
- $\mu_{n,Hall}$ =13,200 cm²/V-sec
- InAIAs barrier (t_{ins}=4 nm)
- Ti/Pt/Au Schottky gate
- L_g=30 nm

L_g=30 nm InAs HEMT

- Large current drive: I_{ON} >0.5 mA/µm at V_{DD}=0.5 V
- High transconductance: g_{mpk} = 1.9 mS/µm at V_{DD}=0.5 V
- V_T = -0.15 V, R_S=190 ohm.μm

- First transistor of any kind with both f_T and $f_{max} > 640$ GHz
- Current record is f_T, f_{max} > 688 GHz from Teledyne/MIT collaboration (Kim, IEDM 2011)

30 nm InAs HEMT – Logic characteristics

• S = 74 mV/dec, DIBL = 80 mV/V

Kim, EDL 2010

30 nm InAs HEMT – Logic characteristics

- S = 74 mV/dec, DIBL = 80 mV/V
- At I_{OFF} =100 nA/µm and V_{DD} =0.5 V, I_{ON} =0.52 mA/µm

InAs HEMTs: Benchmarking with Si

FOM that integrates short-channel effects and transport: I_{ON} @ I_{OFF} =100 nA/µm, V_{DD} =0.5 V

InAs HEMTs: higher I_{ON} for same I_{OFF} than Si. Why?

Why high I_{ON}?

1. Very high electron injection velocity at the virtual source

- v_{ini}(InGaAs) increases with InAs fraction in channel
- v_{inj} (InGaAs) > $2v_{inj}$ (Si) at less than half V_{DD}
- ~100% ballistic transport at L_g~30 nm

Why high I_{ON}?

2. Quantum capacitance less of a bottleneck than previously believed

Biaxial strain + non-parabolicity + strong quantization: $m_{||}^{*} \uparrow \rightarrow C_{G} \uparrow \rightarrow n_{s} \uparrow \rightarrow I_{ON} \uparrow$

Why high I_{ON}?

3. Sharp subthreshold swing due to quantum-well channel

- Dramatic improvement in short-channel effects with thin channel
- Thin channel does not degrade v_{ini} at L_q~40 nm (Kim, IPRM 2011)

Limit to III-V HEMT Scaling: Gate Leakage Current

del Alamo. IPRM 2011

 $t_{ins} \downarrow \rightarrow I_G^{\uparrow}$ → Further scaling requires high-K gate dielectric

4. III-V CMOS: device design and challenges

Modern III-V HEMT vs. modern Si MOSFET:

III-V HEMT

Intel's 45 nm CMOS

- What do we preserve?
- What do we change?

III-V CMOS: HEMT features worth preserving

- Quantum-well channel: key to scalability
- Undoped channel:
- InAs-rich channel:
- └ for high mobility and velocity
- Buried-channel design: -
- Raised source and drain regions: essential for scalability
- Undoped QW channel in extrinsic regions: key to low access resistance

III-V CMOS: HEMT features to change

- Schottky gate: need MOS gate with very thin high-K dielectric
- T-gate: need rectangular gate
- Barrier under contacts: need to eliminate
- Alloyed ohmic contacts: change to refractory ohmic contacts
- Source and drain contacts: need self-aligned with gate
- Footprint: need to reduce by 1000x!

III-V CMOS: other critical issues

- p-channel MOSFET: with performance >1/3 that of n-MOSFET
- Co-integration of n-FET and p-FET on Si: compact, planar surface
- Sub-10 nm MOSFET architectures

What can we expect from ~10 nm III-V NMOS at 0.5 V?

Focus on I_{ON} for fixed I_{OFF} as FOM.

Simple model:

- Q-V characteristics from Poisson-Schrodinger simulations (from subthreshold to strong inversion)
- 2D ballistic velocity model (1 subband):

$$v_{inj} = \sqrt{\frac{2kT}{\pi m^*}} \frac{\mathcal{F}_{1/2}(\frac{E_F - E_1}{kT})}{\mathcal{F}_0(\frac{E_F - E_1}{kT})}$$

Lundstrom, TED 2002

- Add channel capacitance to match experimental S
- Add ohmic drop on experimental R_S
- No adjustable parameters beyond m*=0.05 m_o
- Did not attempt to match V_T

Model validation: I-V characteristics of 30 nm InAs HEMT

- Excellent agreement through nearly five orders of magnitude of $\rm I_{\rm D}$
- Residual disagreement due to impact ionization?

Projection to ~10 nm InAs NMOS at 0.5 V

Scale experimental 30 nm InAs HEMT by about 3x:

- Q-V characteristics from Poisson-Schrodinger simulator
- Assume same short-channel effects: S=74 mV/dec
- Examine impact of R_S and D_{it}
Role of R_s

- R_S depresses I_{ON} without changing I_{OFF}
- To obtain I_{ON} >1 mA/µm, need R_S<100 Ω.µm

Role of D_{it}

Simple case: constant D_{it} throughout structure For R_s =100 ohm.um and S=74 mV/dec (for D_{it} =0):

- D_{it} in bandgap increase $S \rightarrow I_{ON} \downarrow$
- D_{it} inside conduction band further decrease I_{ON}

Role of D_{it}

- To obtain I_{ON} >1 mA/µm, need D_{it} <3x10¹² eV⁻¹.cm⁻²
- Relative insensitivity of I_{ON} to D_{it} due to high C_{ins}: C_{ins} =85 fF/µm² \leftrightarrow D_{it}=5.3x10¹³ eV⁻¹.cm⁻²

Assumptions/concerns

• Aggressive vertical scaling possible: EOT=0.41 nm

[EOT \equiv equivalent oxide thickness]

- Rigid 3X shrink preserves short-channel effects
- L_{side} can be shrank without degrading SCE
- $R_s < 100 \Omega.\mu m$ feasible at required footprint
- Ballistic transport even with high-K dielectric + thin channel

Critical issue #1: the gate stack

Challenge: metal/high-K oxide gate stack

- Fabricated through *ex-situ* process
- Very thin barrier (EOT<1 nm)
- Low gate leakage (I_G <1 A/cm² at V_{GS}=0.5 V)
- Low D_{it} (<3x10¹² eV⁻¹.cm⁻² in top ~0.3 eV of bandgap and inside CB)
- Reliable

Problem: Fermi level pinning at oxide/III-V interfaces

2.5 9

242/2

Problem: Fermi level pinning at oxide/III-V interfaces

Fermi level pinning due to interfacial defects

- Even 1% of a monolayer of O at GaAs surface pins E_F
- E_F pinning produced by any foreign element at GaAs surface
- E_F pinning position largely independent of surface adatom

Spicer, JVST 1979

Recent breakthrough: oxide/III-V interfaces with unpinned Fermi level!

"Self-cleaning" during ALD

ALD largely eliminates surface oxides responsible for Fermi level pinning:

- Occurs during first exposure of III-V surface to ALD metal source
- Surface robust to later exposure to ALD oxidant
- First observed with AI_2O_3 , then with other high-K dielectrics
- First seen in GaAs, then in other III-Vs

Interface state density in high-K/III-V by ALD

 D_{it} hard to characterize \rightarrow reports vary widely

General consensus for D_{it}:

- GaAs: high at midgap, medium close to $\rm E_{c}$ and $\rm E_{v_{i}}$ large peak around midgap
- InGaAs: high close to E_v , low close to E_c
- InP: high close to E_v , very low close to E_c

Problem: low mobility in high-K/InGaAs structure

In high-K/InGaAs surface-channel structure:

- Low mobility (μ_e <2,000 cm²/V.s vs. μ_e ~10,000 cm²/V.s in HEMT)
- $\hspace{0.1cm} t_{ox} \downarrow \twoheadrightarrow \hspace{0.1cm} \mu_{e} \downarrow$
- Mostly due to interface roughness scattering

Lin, IEDM 2008

Solution: buried-channel structure

Introduce thin wide bandgap semiconductor between dielectric and channel:

- For InGaAs, InP best choice (lattice matched, low D_{it} close to E_c)
- Key trade-off: scalability vs. transport:

The high-water mark: Intel's InGaAs Quantum-Well MOSFET

- Direct MBE on Si substrate (1.5 μm buffer thickness)
- InGaAs buried-channel MOSFET (under 2 nm InP barrier)
- 4 nm TaSiO_x gate dielectric by ALD, L_q=75 nm
- First III-V QW-MOSFET with better performance than Si

Critical issue #2: the ohmic contacts

Challenge: nanometer-scale ohmic contacts with low R_s

- Low contact resistance ($R_s < 100 \Omega.\mu m$)
- Raised above channel

Recessed gate

- Self-aligned to gate (L_{side} <10 nm)

Regrown source and drain

Key problem: ohmic contact scaling

Current contacts to III-V FETs are >100X off in required contact resistance

Resistivity and contact resistance of n⁺-In_{0.53}Ga_{0.47}As Singisetti APL 2008

ρ_n=5x10⁻⁴ Ω.cm

- n⁺-In_{0.53}Ga_{0.47}As *vs.* n⁺-Si:
 - \circ μ_e: ~10X across doping range → minimum ρ_n comparable
 - \circ ρ_c comparable for various metals
- Fundamentally, contacts to InGaAs should be as good as to Si

Recessed-gate self-aligned InGaAs QW-MOSFET

Key features:

- Buried channel design
- Inverted-delta doping
- Refractory ohmic contacts
- Ohmic contacts self-aligned to gate
- Gate-last process
- Lift-off free front-end process
- Extensive RIE

Lin, APEX 2012

Process leverages self-aligned InGaAs HEMT for mmw applications (Waldron, TED 2010; Kim, IEDM 2010)

Output and transfer characteristics: evidence of RIE damage and solution

- L_g=2 µm, L_{side}= 100 nm
- RIE leads to extensive device damage
- Damage annealed at 340°C for 15 min
- $g_m=205 \ \mu\text{S}/\mu\text{m}$ at $V_{DS}=0.5 \ V$ for $L_g=2 \ \mu\text{m}$
- V_T=0.05 V

Subthreshold and mobility characteristics

- S=95 mV/dec
- I_{on}/I_{off}=10⁶
- μ_{peak}=2800 cm²/V.s

Source and drain resistance

- $R_s=260 \Omega.\mu m$ (our best result in HEMT ~140 $\Omega.\mu m$)
- Major component is lateral Mo resistance (R_{sh} =25 Ω/\Box)
- Vertical tunneling resistance greatly reduced wrt HEMT (50 Ω.µm vs. >100 Ω.µm)

Latest results: Dielectric scaling to EOT<1 nm

InP (1 nm) + AI_2O_3 (0.4 nm) + HfO_2 (2 nm) \rightarrow EOT~0.9 nm

Lin, IEDM 2012

- Long-channel In_{0.53}Ga_{0.47}As FET
- InP scaled to 1 nm by Ar-based dry etching
- S=69 mV/dec
- Close to lowest S reported in any III-V MOSFET: 66 mV/dec (EOT=1.2 nm) [Radosavljevic, IEDM 2011]

Latest results: L_g=60 nm QW-MOSFET

Many improvements:

- L_g=60 nm
- Improved gate recess process
- Tight S/D spacing (L_{side} < 20 nm)
- Scaled barrier (InP) and dielectric (high-K) thickness

Lin, IEDM 2012

Transfer and output characteristics

- S=145 mV/dec at 0.5 V
- $I_{on} = 120 \text{ mA/}\mu\text{m}$ measured at $V_{dd} = 0.5 \text{ V}$ and $I_{off} = 100 \text{ nA/}\mu\text{m}$
- Peak g_m = 1250 μS/μm
- $I_g < 5x10^{-10}$ A/µm at maximum gate overdrive
- $R_{on} = 570 \ \Omega.\mu m (at V_{gs} V_t = 0.7 \ V)$

Lin, IEDM 2012 59

Regrown source and drain self-aligned InGaAs QW-MOSFET

Egard, IEDM 2011

Key features:

- n⁺-InGaAs raised source and drain regions grown by MOCVD
- Self-aligned to gate
- Surface quantum-well channel
- Gate oxide: Al₂O₃ (0.5 nm) + HfO₂ (6.5 nm); EOT=1.3 nm

Characteristics of $L_g = 55 \text{ nm MOSFET}$

- g_m=1900 μS/μm
- S=187 mV/dec
- R_S=88 Ω.µm

Egard, IEDM 2011

Critical issue #3: the p-channel device

Challenge: high-performance p-type III-V MOSFETs

- Antimonide channel

del Alamo,

Incorporating strong compressive strain

III-V pFETs: the benefits of strain

Uniaxial-strain piezoresistance coefficients in p-type Quantum Wells

P-type InGaAs QW-FET with process-induced uniaxial strain + epitaxially-grown biaxial strain

Anisotropic g_m enhancement

g_m enhancement scales correctly

Strain-induced Δg_m anisotropy

Result of band deformation + piezoelectric effect

 P_z affects quantization in valence band \rightarrow m^{*} anisotropy

- Al₂O₃ (10 nm) / In_{0.35}Ga_{0.65}Sb (7 nm) MOSFET
- S=120 mV/dec in L_g =5 µm device

V_a (V)

InGaSb buried-channel MOSFET

Need Al containing barrier (*i.e.* AlInSb)
→ Also need cap: GaSb or InAs

Scalibility problems for buried-channel InGaSb MOSFETs

InGaSb buried-channel MOSFET

Al₂O₃/GaSb/AllnSb/InGaSb buried-channel MOSFET:

No subthreshold swing data given

Yuan, VLSI Tech 2012

Critical issue #4: non-planar MOSFET designs

Challenge: small subthreshold swing on a small-footprint

- Planar designs might not provide enough "electrostatic integrity"
- Need higher carrier confinement through restricted dimensionality designs

Increased electrostatic control through multiple gates

70

InGaAs Trigate MOSFET

Far improved S vs. planar quantum-well MOSFET

InGaAs Gate-All-Around Nanowire MOSFET

- L_{ch}= 50-120 nm
- W_{Fin}=30, 50 nm
- H_{Fin} = 30 nm
- L_{NW} = 150-200 nm
- $t_{ox} = 10 \text{ nm } Al_2O_3$
- # wires = 1, 4, 9, 19

Gu, IEDM 2011 Gu, APL 2011

Surface-channel design
InGaAs Gate-All-Around Nanowire MOSFET

I_{on} =720 μA/μm (86 μA/wire)

Gu, EDL 2012

- $g_m = 510 \ \mu\text{S/}\mu\text{m}$ (61 $\mu\text{S/}\text{wire}$) at V_{GS} - V_T =2 V
- S=150 mV/dec (EOT≈4.5 nm), I_g <10⁻⁷ A/cm²
- Low field µ~900 cm²/V.s (200 cm²/V.s in Si GAA NW from Samsung)

Critical issue #5: co-integration of nFETs and pFETs

The challenge: cost-effective co-integration of nFETs and pFETs on Si substrate

- Different channel materials
- Different lattice constants
- Planar surface
- Thin buffer layer
- Compact
- Low defectivity

Fiorenza ECS 2010

Direct Wafer Bonding

Dielectric bonding of InGaAs/InP wafer and Ge wafer

Device surfaces at two different levels

III-V on Insulator (XOI)

XOI platform: epitaxial layer transfer onto Si/SiO₂ substrate

Produces freestanding materials on a receiver substrate

- Single crystal material
- Strain preserved
- Void-free interfaces

2-step transfer process

nFET: InAs (8 nm) pFET: InAs/In_{0.3}Ga_{0.7}Sb/InAs: 2.5/7/2.5 nm Both grown on GaSb wafer

Nah, Nano Lett 2012

III-V CMOS on Si

1st III-V CMOS on Si based on InAs n-FETs and InGaSb p-FETs

Aspect Ratio Trapping

Growth in high aspect ratio trenches: dislocations "trapped" at sidewalls GaAs Ge

Aspect Ratio Trapping + Epitaxial Lateral Overgrowth

Planar surfaces obtained by epitaxial lateral overgrowth following ART

GaAs MOSFETs demonstrated

GaAs

MP surface

Si

1.0 V_{ds} (V)

1.5

2.0

1 µ m

0.5

SiO.

III-Vs in CMOS: narrow window of opportunity

V. Moroz, UCB Seminar 2011

Conclusions

- New materials coming into CMOS roadmap:
 - InGaAs most promising III-V for n-MOSFET
 - InGaSb most promising III-V for p-MOSFET, also Ge
- Lots of fundamental research needed to chart a path for CMOS beyond Si:
 - Interface physics and chemistry with III-Vs
 - Structures for sub-10 nm gate lengths
 - MOS gate stack reliability
 - Integration of n-channel and p-channel devices based on different materials onto Si substrate