InAs Quantum-Well MOSFET ($L_g = 100 \text{ nm}$) for Logic and Microwave Applications

T.-W. Kim, R. J. W. Hill, D.-H Kim¹, J. A. del Alamo², C. D. Young, D. Veksler, C.Y. Kang, J. Oh³,

C. Hobbs, P. Kirsch, and R. Jammy

SEMATECH, USA, E-mail: taewoo.kim@sematech.org, ¹Teledyne, ²MIT, ³Yonsei University

Abstract

We report a recessed quantum-well (QW) InAs MOSFET with enhancement-mode operation down to 100 nm gate lengths. The device features a composite insulator consisting of an MBE-grown 2 nm InP barrier plus an ex-situ ALD-deposited 3 nm Al₂O₃ for an estimated EOT of 2 nm. Our devices exhibit excellent short-channel effects down to the $L_g = 100$ nm regime. InAs QW MOSFETs exhibit record transconductance $g_m = 1.73$ mS/µm and high-frequency performance ($f_T = 245$ GHz and $f_{max} = 355$ GHz). These are the highest values of f_T and f_{max} for any III-V MOSFET.

Introduction: III-V semiconductors have emerged as a promising channel material for future CMOS low power logic applications [1-2]. Their enhanced electron transport properties offer significant power reduction through aggressive supply power (V_{DD}) scaling. To maximize V_{DD} scaling for logic applications both transconductance ($g_{m,ext}$) and subthreshold slope (S) must be optimized. We report three significant advances towards these goals: first an InAs sub-channel to improve carrier transport, second an optimized gate stack process with thin EOT and low D_{it} to improve S, and third an improved layer structure with thin InP barrier (to reduce access resistance and surface depletion) and optimized Si δ -doping (to improve S and reduce R_{SD}).

Experimental: Fig. 1 and Fig. 2 show a cross section of the device structure and a corresponding TEM image of an $L_g = 100$ nm device, respectively. From top to bottom, the epitaxial layer structure consists of a heavily doped cap (20 nm In_{0.7}Ga_{0.3}As) layer, 2-nm InP barrier, 10-nm In_{0.53}Ga_{0.47}As/InAs/In_{0.53}Ga_{0.47}As composite channel, 5 nm In_{0.52}Al_{0.48}As spacer, Si δ -doping, and 300-nm In_{0.52}Al_{0.48}As buffer on InP substrate. The thin 2 nm InP barrier was introduced to reduce access resistance and improve charge control, EOT and immunity to short channel effects as well as to improve D_{it} [3]. The device also features a 5 nm thick InAs sub-channel to improve carrier transport and electron confinement in the channel. In a calibration sample, we measured $\mu_{e,Hall} = 11,200$ cm^2/V -sec and $n_{s,ch} = 9 \times 10^{11}/cm^2$ at 300 K.

Inverted Si δ -doping was used to supply carriers to the S/D access region and reduce R_{SD} . It is critical to carefully select the inverted Si δ -doping density to achieve the best trade-off of threshold voltage (V_T), subthreshold slope (S) and parasitics resistance (R_{SD}) [4]. Fig. 3 shows channel carrier density as a function of gate potential for various Si δ -doping densities. The ability to modulate the channel carriers get worse as Si δ -doping increases, indicating that Si δ -doping needs to be carefully optimized, for acceptable subthreshold characteristics. In this work, we have chosen a value of 1 x 10^{12} /cm², as the Si δ -doping, which resulted

in both low R_{SD} and excellent electrostatic control. Fig. 4 shows the corresponding conduction band profile with Si δ -doping = 1 x 10^{12} /cm² at $V_{GS} = 0$ V.

Device fabrication was similar to that of a conventional HEMT [5], except for the deposition of a gate oxide prior to metal gate formation. After S/D ohmic contact with a 2 μ m spacing, a gate pattern using single-layer ZEP-520A was defined by e-beam lithography. This was transferred to a passivating SiO₂ layer by CF₄ plasma. Subsequently, the cap was etched using a diluted citric acid based solution. After removing the e-beam resist, 3 nm of Al₂O₃ was deposited by ALD and the Pd/Au metal gate was evaporated. In this way, devices with L_g from 100 nm to 250 nm were fabricated.

Results and Discussion: Fig. 5 shows the device output characteristics demonstrating excellent pinch off and low R_{SD} (323 Ohm-µm). **Fig. 6** shows typical subthreshold characteristics with L_g from 100 nm to 250 nm. These devices show excellent subthreshold behavior and I_{ON}/I_{OFF} ratio (~10⁴) down to $L_g = 100$ nm. The gate leakage (I_g) is lower than 0.1 nA/µm at all measured bias conditions. InAs QW MOSFET with $L_g = 100$ nm exhibits $V_T = +0.2$ mV (defined as $I_D = 1\mu A/\mu m$) and subthreshold swing (S) = 105 mV/dec at $V_{DS} = 0.5$ V. This results in an $I_{OFF} = 5 \times 10^{-8} A/\mu m$ at $V_{GS} = 0$ V and $V_{DS} = 0.5$ V. The attainment of this value in a device with low resistance parasitics and excellent subthreshold swing is significant because this is the first time that these three features are shown in combination in an III-V MOSFETs.

Fig. 7 shows typical transconductance characteristics at $V_{DS} = 0.5$ V. The InAs QW MOSFET exhibits $g_{m,max} > 1.73$ mS/µm at $V_{DS} = 0.5$ V. This is a record transconductance for a III-V MOSFET of this gate length and V_T and is mainly due to the well optimized Si δ -doping density that contributes to reduced access resistance and the high electron mobility associated with the InAs subchannel.

Microwave performance was characterized from 0.5 GHz to 50 GHz. On-wafer open and short patterns were used to subtract pad parasitics from the measured device

S-parameters. **Fig. 8** plots h_{21} , U_g and stability-factor (k) against frequency InAs MOSFET with $W_g = 2 \times 20 \ \mu m$ and $L_g = 100 \ nm$, at $V_{GS} = 0.7$ and $V_{DS} = 0.8 \ V$. We obtain a current-gain cut-off frequency $f_T = 245 \ GHz$ and a maximum oscillation frequency $f_{max} = 355 \ GHz$. These are record values among III-V MOSFETs of similar gate length. The device also exhibits $f_T = 238 \ GHz$ at $V_{DS} = 0.5 \ V$. Small-signal parameter extraction from measured S-parameters gave good consistency between DC and RF transconductance.

Reference:

- R. Chau *et al.*, IEEE T-Nano., p. 153 (2005).
 M. Radosavljevic *et al.*, IEDM, p.319 (2009)
- [5] D.-H. Kim *et al.*, EDL, p. 830 (2008).

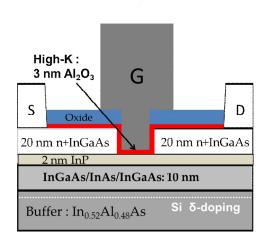


Fig. 1: Cross-sectional schematic of QW device with 3 nm ALD Al_2O_3 , 2 nm InP barrier and InAs composite channel.

Conclusions: We have demonstrated $L_g=100$ nm recessed enhancement-mode quantum-well InAs MOSFETs with a composite Al₂O₃/InP gate stack. $L_g = 100$ nm devices exhibit outstanding logic characteristics, with S = 105 mV/dec, V_T = 0.2 V, I_{OFF} = 5 X 10⁻⁸ A/µm and g_{m,max} > 1.73 mS/µm at V_{DS} = 0.5 V. In addition, our devices show record f_T = 245 GHz and f_{max} = 355 GHz. These results emerge from a well optimized inverted Si δ -doping, ALD high-k deposition and high mobility InAs channel design.

[2] Y. Sun *et al.*, IEDM, p. 367 (2008).
[4] T.-W. Kim *et al.*, IEDM, p. 483 (2009).

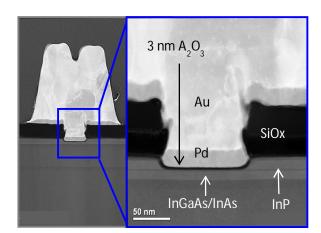


Fig. 2: TEM cross-section of fabricated device. Note well optimized recess with minimal L_{side}

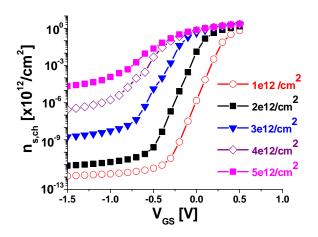


Fig. 3: 1D Poisson-Schrödinger simulations of channel electron density as a function of gate bias for different Si delta-doping concentrations. High δ -doping density limits charge modulation.

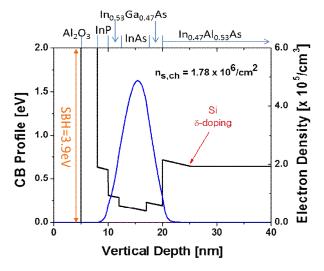
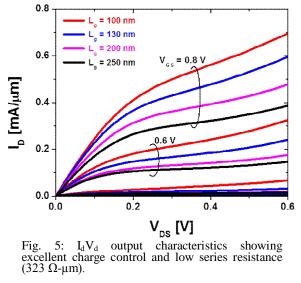



Fig. 4: 1D Poisson-Schrödinger simulation of conduction band profile and electron wave-function at VGS=0 V.

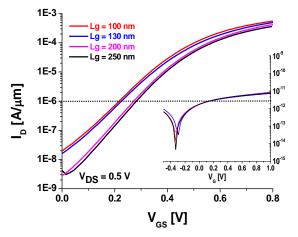


Fig. 6: Semi-log scale $I_d V_g L_g = 100$ nm device has SS of 105 and $I_{on}/I_{off} > 1000$.

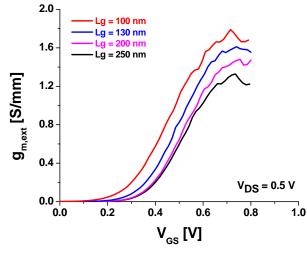


Fig. 7 $g_{m,ext}$ vs. V_G. L_g = 100 nm device has $g_{m,max}$ = 1.73 mS/ μ m

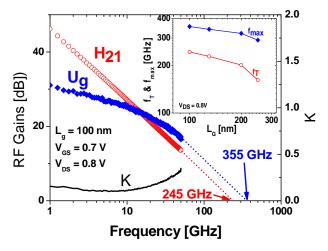


Fig. 8 Microwave characteristics of Lg = 100 nm InAs MOSFET with the highest fT = 245 GHz and fmax = 355 GHz of any III-V MOSFET