InAs Quantum-Well MOSFET ($L_g = 100 \text{ nm}$) with Record High g_m , f_T and f_{max}

T.-W. Kim, R. J. W. Hill, C. D. Young, D. Veksler, L. Morassi¹, S. Oktybrshky², J. Oh, C.Y. Kang, D.-H Kim³,

J. A. del Alamo⁴, C. Hobbs, P. D. Kirsch, and R. Jammy

SEMATECH, USA, E-mail: <u>taewoo.kim@sematech.org</u>, ¹Univ. of Modena & Emilia, ²CNSE, ³Teledyne, ⁴MIT

Abstract: This paper reports InAs quantum-well (QW) MOSFETs with record transconductance ($g_{m,max} = 1.73$ mS/µm) and high-frequency performance ($f_T = 245$ GHz and $f_{max} = 355$ GHz) at $L_g = 100$ nm. This record performance is achieved by using a low D_{it} composite Al₂O₃/InP gate stack, optimized layer design and a high mobility InAs channel. This work is significant because it shows a possible III-V material pathway from In_{1-x}Ga_xAs to InAs with similar processing and generalized characterization, including D_{it} .

Introduction: III-V semiconductors have emerged as a promising channel material for future CMOS low power logic applications [1-2]. Their enhanced electron transport properties offer significant power reduction through aggressive supply power (V_{DD}) scaling. To maximize V_{DD} scaling for logic application, both transconductance ($g_{m,ext}$) and subthreshold slope (S) must be optimized. We report 3 significant advances towards these goals: first an InAs sub channel to improve carrier transport property, second an optimized gate stack process with thin EOT of 2 nm and low D_{it} to improve S, and third an improved layer structure with thin InP barrier (to reduce access resistance) and optimized Si δ -doping (to improve S and reduce R_{SD}).

Experimental: Fig. 1 shows a cross-section of the device structure and Fig. 2 a corresponding TEM image of $L_g = 100$ nm device. A thin 2 nm InP barrier was used to reduce access resistance and improve charge control, EOT and immunity to short-channel effects as well as to improve D_{it} [3]. A 10 nm In_{0.53}Ga_{0.47}As/InAs/In_{0.53}Ga_{0.47}As composite channel with inverted Si δ -doping was chosen to improve carrier transport and electron confinement in the channel. Inverted Si δ -doping 5 nm below the channel inside the InAlAs buffer was used to supply carriers to the S/D access region and reduce R_{SD} without adding to the barrier thickness and EOT. It is critical to carefully select the inverted Si δ -doping density to achieve the best trade-off of threshold voltage (V_T), subthreshold slope (S) and parasitic resistance (R_{SD}).

Fig. 3 shows channel carrier density as a function of gate potential for various Si δ -doping densities. The ability to modulate the channel charge degrades as Si δ -doping increases, indicating that Si δ -doping needs to be carefully optimized for acceptable subthreshold characteristics [4]. In this work, we selected δ -doping = 1x10¹²/cm² which resulted in both low R_{SD} (enabling record high g_m) and excellent electrostatic control (enabling good S). Fig. 4 shows the corresponding conduction band profile with Si δ -doping = 1 x 10¹²/cm² at V_{GS} = 0 V. In a calibration sample, we measured $\mu_{e,Hall} = 11,200 \text{ cm}^2/\text{V-sec}$ and $n_{s,ch} = 9 \times 10^{11}/\text{cm}^2$ at 300 K.

Device fabrication was similar to that of a conventional HEMT [4], with the addition of gate oxide deposition prior to metal gate formation (3 nm of Al_2O_3 for an EOT = 2 nm). Additionally, MOS capacitors were fabricated with a thicker 10 nm $Al_2O_3/InGaAs$ to enable accurate interfacial state density (D_{it}) extraction.

Results and Discussion: Fig. 5 shows MOSCAP C-V characteristics from 1 kHz to 1 MHz with low frequency dispersion in both accumulation and depletion. Analysis of the interfacial state density (D_{it}) was performed using the

SEMATECH generalized technique [5] that combines High-Low frequency and Terman D_{it} extraction methods. This technique is a significant improvement on previous methods as it allows D_{it} , trap energy (E_T) and oxide capacitance (C_{ox}) to be determined simultaneously. **Fig. 6** shows excellent agreement between model and measured data, confirming the accuracy of the D_{it} result. Fitting the model simultaneously to the high frequency C-V (25 °C) and low frequency C-V (100 °C in order to accelerate trap response) curves produces the D_{it} vs. E_T dependence (Fig. 6, inset). D_{it} is lower in the upper portion of the band gap (minimum $D_{it} = 4 \times 10^{12}$ /eV.cm²), which is preferable for NMOS device operation.

Fig. 7 shows the device output characteristics, demonstrating excellent pinch off and low R_{SD} (323 Ohm-µm). Fig. 8 shows typical subthreshold characteristics with excellent subthreshold behavior and I_{ON}/I_{OFF} ratio ~ 2 x 10³ down to $L_g = 100$ nm. The gate leakage (I_g) is lower than 0.1 nA/µm at all measured bias conditions. InAs QW device with $L_g = 100 \text{ nm}$ exhibits $V_T = +0.2 \text{ V}$ (defined at $I_D = 1 \mu A/\mu m$) and S = 105 mV/dec at V_{DS} = 0.5 V. This results in an I_{OFF} = 5 x 10^{-8} A/µm at V_{GS} = 0 V and V_{DS} = 0.5 V. The attainment of this I_{OFF} value in a device with low resistance parasitics and excellent subthreshold slope is significant because this is the first time that these three features are shown in combination in a III-V MOSFET. Fig. 9 shows good immunity to short-channel effects with controlled V_T roll-off at $V_{DS} = 50$ mV and $V_{DS} = 0.5$ V. Fig. 10 shows typical transconductance characteristics at $V_{DS} = 0.5$ V. The InAs QW MOSFET exhibits $g_{m,max} > 1.73 \text{ mS/}\mu\text{m}$ at $V_{DS} = 0.5 \text{ V}$. This is a record transconductance for a III-V MOSFET of this gate length and V_T and it is the result of both the optimized Si δ -doping density that contributes to reduced access resistance and the high electron mobility associated with the InAs subchannel.

Microwave performance was characterized from 0.5 GHz to 50 GHz. **Fig. 11** plots h_{21} , U_g and stability-factor (k) against frequency. We obtained a current-gain cut-off frequency $f_T = 245$ GHz and a maximum oscillation frequency $f_{max} = 355$ GHz. These are record values for any III-V MOSFET. The device also exhibits $f_T = 238$ GHz at $V_{DS} = 0.5$ V. Small-signal parameter extraction from measured S-parameters gave good consistency between DC and RF transconductance.

We benchmarked our devices with other state-of-the-art III-V MOSFETs (including surface, buried-channel and non-planar devices) using the figure of merit $Q = g_m/S$ [6], as shown in **Fig. 12** [7-11]. Our devices exhibit excellent transconductance and subthreshold slope with $Q \sim 16$, which can only be achieved with optimized layer structure, ohmic contacts (low R_{SD}) and low D_{it} / EOT gate-stack.

Conclusions: We have demonstrated quantum-well InAs MOSFETs with outstanding logic characteristics (S = 105 mV/dec, $V_T = 0.2$ V, $I_{OFF} = 5 \times 10^{-8}$ A/µm and $g_{m,max} > 1.73$ mS/µm at $V_{DS} = 0.5$ V). In addition, our devices show record $f_T = 245$ GHz and $f_{max} = 355$ GHz. These results emerge from an optimized layer structure (with thin InP barrier and inverted Si δ -doping), high quality Al₂O₃/InP gate stack, and high mobility InAs channel.

Fig. 1: Cross-sectional schematic of QW device with 3 nm ALD Al_2O_3 , 2 nm InP barrier and InAs composite channel.

Fig. 4: 1d Poisson-Schrödinger simulation of conduction band profile and electron wave-function for the optimized Si δ -doping condition.

Fig. 7: I_dV_d output characteristics showing excellent charge control and low series resistance (323 Ω - μ m).

Fig. 10 $g_{m,ext}V_G.$ L_g = 100 nm device has $g_{m,max}$ = 1.73 mS/ μm

Fig. 2: TEM cross-section of fabricated device. Note well optimized recess with minimal $L_{\rm side}$

Fig. 5: Room temperature CV characteristics of partner $In_{0.53}Ga_{0.47}As$ MOSCAP with 10 nm ALD Al_2O_3 (reduced leakage for accurate CV measurement)

Fig. 8: Semi-log scale $I_dV_g L_g = 100$ nm device has SS of 105 and $I_{on}/I_{off} > 1000$.

Fig. 11 Microwave characteristics of $L_g = 100$ nm InAs MOSFET with the highest $f_T = 245$ GHz and $f_{max} = 355$ GHz of any III-V MOSFET

Fig. 3: 1d Poisson-Schrödinger simulations of channel electron density as a function of gate bias. High δ -doping density limits charge modulation.

Fig. 6: Measured and simulated CV curves with inset of D_{it} extracted using the generalized technique as a function of energy. Note mid-gap D_{it} of ~4x10¹² eVcm²

Fig. 9: $V_{\rm T}$ vs $L_g.$ Devices display reasonable immunity to $V_{\rm T}$ roll-off given EOT of 2 nm and buried channel design

Reference: [1] R. Chau *et al.*, IEEE T-Nano., p. 153 (2005). [2] Y. Sun *et al.*, IEDM, p. 367 (2008). [3] M. Radosavljevic *et al.*, IEDM, p.319 (2009) [4] T.-W. Kim *et al.*, IEDM, p. 483 (2009). [5] M. Madan *et al.*, DRC, p. 117 (2011). [6] G. Doornbos *et al.*, EDL, p. 1110 (2010). [7] M. Egard *et al.*, IEDM, p. 303 (2011). [8] Y. We *et al.*, IEDM, p. 331 (2009). [9]R. Hill *et al.*, IEDM, p. 130 (2010). [10]C. Thelander *et al.*, EDL, p. 206 (2008). [11] U. Singisett *et al.*, EDL, p. 1128 (2009).