Strain and Temperature Dependence of Defect Formation at AlGaN/GaN High Electron Mobility Transistors on a Nanometer Scale Chung-Han Lin Department of Electrical & Computer Engineering, The Ohio State University Tyler A. Merz and Daniel R. Doutt Department of Physics, The Ohio State University Jungwoo Joh and Jesus del Alamo **Microsystems Technology Laboratory, Massachusetts Institute of Technology** Umesh K. Mishra **Electrical & Computer Engineering, University of California, Santa Barbara** Leonard J. Brillson **Departments of Electrical & Computer Engineering and Physics**

Symposium G: Reliability and Materials Issues of III-V and II-VI Semiconductor Optical and Electron Devices and Materials II

Outline

<u>Background</u> : AlGaN/GaN HEMT physical degradation mechanisms – Historical efforts

<u>Techniques</u>: DRCLS, KPFM, I_D &I_{GOFF} vs. V_{DS}

Device Conditions: ON-state vs. OFF-state stress

Electric field vs. Thermal stress : Surface potential, leakage current, defect generation → Failure prediction

<u>Conclusions</u>: (1) Dominant impact of V_{DS} vs. I_{DS} on device reliability (2) Primary defects located *inside* AlGaN

Motivation

- AlGaN/GaN HEMT: high power, RF, and high speed applications
 - Reliability challenge: Hard to predict failure
- ► High current, piezoelectric material, & high field due to high bias → Defect generation

Micro-CL, AFM, and KPFM: Follow evolution of potential, defects, and failure

Background: All-Optical Methods

[2] A. Sarau *et al.* IEEE Trans. ElectronDevices, 53, 2438 (2006)Raman/IR Technique

Shigekawa et al. J. Appl. Phys. 92, 531 (2002)

PL Technique

Background: Scanned Probe Methods

T versus Gate-Drain Location

Depth and Laterally-Resolved CLS

140.0 nm

105.6 nm

10 nm

0.0 nm

52.8 nm

10.0% 25.0% 50.0%

75.0% 90.0%

-52.8 nm

-105.6 nm

Depth (nm)

80 100 120 140 160 180 200

0.0005

0.0000

0

20

40

60

Background: Temperature Maps

I. Ahmad *et al.* Appl. Phys. Lett. **86**, 173503 (2005)

- Hottest spot at drain-side gate edge
- Hot spots also inside GaN buffer

C.-H. Lin et al, IEEE Trans. Electron Devices

Electroluminescence Results: Gap States

Meneghesso et al. IEEE Tran. Device Mater. Rel., 8, 332 (2008)

Bouya et al. Microelectron. Reliab., 48, 1366 (2008)

Nakao et al. Jpn. J. Appl. Phys., 41, 1990 (2002)

Electroluminescence detects gap states forming inside HEMT during operation

Electrochemically-Produced Defects

Park et al. Microelectron. Reliab., 49, 478 (2009)

- High C, O, and Si concentrations at gate foot "lattice disruption" area
- Gate leakage current promotes electrochemical reaction

Smith et al. ECS Transactions, 19, 113 (2009)

Impact of Structural Defects

Inverse Piezoelectric Effect and Defects

 \rightarrow form defects at gate foot

Measurement Strategy

Thermal Mapping: DRCLS NBE laterally (<10 nm) & in depth (nm's to μm's)

– Obtain T vs. I_{DS}; locate "hot" spots

- Stress Mapping: DRCLS NBE near gate foot vs. V_{DS} with I_{DS} OFF (*no heating*)
- **Potential Mapping**: Kelvin work function vs. V_{DS} with I_{DS} OFF (*no heating*)
- Device testing: Step-wise ON & OFF-state I_{DMAX} and $I_{GOFF} \ vs. \ V_{DS}$
- **Defect Generation**: CLS defect peak intensities vs. thermal and electrical stress
- Defect Localization: DRCLS intensities vs. depth

Stress Conditions

Reference: No stress
ON-state stress: high I_D, low V_{DS}
(I_D = 0.75 A/mm, V_{DS} = 6 V, V_G = 0 V)

◆ OFF-state stress : low I_D, high V_{DS}
(I_D = 5*10⁻⁶ A/mm, V_{DS} = 10 ~ 30 V
V_G = -6 V)
◆ I_{GOFE} taken at V_{DS} = 0.5 V, V_{GS} = -6 V

Aim: Test electric field-induced strain vs. currentinduced (e.g., heating) mechanism

Strain Measurements: Drain-side Gate Foot

Applied voltage blue-shifts band gap, increases mechanical strain at drain-side gate foot

→ 26 meV CL shift = 1 GPa ; V_{DG} = 32 V → 0.27 GPa

C.H. Lin et al. Appl. Phys. Lett. 97, 223502 (2010)

I_{DMAX}, I_{G-OFF} vs. Time & Applied Voltage

OFF-state I_{G-Off} rises sharply at threshold V_{DG}

• ON-state I_{G-OFF} decreases vs. time

 \rightarrow device degradation with external stress

Surface Potential Evolution (OFF-state)

Low potential regions appear and expand with increasing applied stress V_{DG}

C.H. Lin *et al*. Appl. Phys. Lett. **97**, 223502 (2010)

Surface Potential Evolution (ON-state)

Lower

Current stress seems to degrade device in a different way

Device Failure under OFF-state Stress

• Device failure occurs as V_{DG} increases further

• Large, cratered failure area appears; morphology of drain metal exhibits huge change

Correlation between AFM, KFPM & SEM

AFM, KPFM and SEM results reveal that device fails at the <u>lowest surface potential</u> area, where defect density is highest

Defect Spectroscopy of Low Potential Region

Within low potential region and at depth of 2DEG, DRCLS reveals formation of deep level defects

C.H. Lin et al. Appl. Phys. Lett. 97, 223502 (2010)

Defect Generation vs. Location

Areas of highest defect intensities and highest stress correlate Lower defect creation for On-state stress

Largest defect increase at lowest potential region

C.-H. Lin et al, IEEE Trans. Electron Devices

Defect Generation vs. Potential

Increasing defects densities correlate with decreasing potential

Surface Potential vs. Electrical Stress

C.H. Lin et al. Appl. Phys. Lett. 97, 223502 (2010)

CLS Energy Comparison with Trap Spectroscopy

• **<u>DLOS</u>**: 3 traps observed: E_C-0.55 (dominant), 1.1, &1.7-1.9 eV

High DLOS 10¹² cm⁻² Trap Density: A. R. Arehart, A. C. Malonis, C. Poblenz, Y. Pei, J. S. Speck, U. K Mishra, S. A. Ringel, Phys. Stat. Sol. C 1-3 (2011) DOI 10.1002/pssc.201000955

 DRCLS: 2.8 eV BB and 2.3 eV YB emissions: Traps that grow under DC stress – high 10¹² cm⁻² densities

KPFM E_a = **0.55 Activation Energy**: S. Kamiya, M. Iwami, T. Tsuchiya, M. Kurouchi, J. Kikawa, T. Yamada, A. Wakejima, H. Miyamoto, A. Suzuki, A. Hinoki, T. Araki, and Y. Nanishi, Appl. Phys. Lett. **90**, 213511 (2007); M. Arakawa, S. Kishimoto, and T. Mizutani, Jpn. J. Appl. Phys. Part I **36**, 1826 (1997)

AlGaN/GaN HEMT Defect Location

- New 3.6 eV feature 0.5-0.6 eV below $E_C \rightarrow \underline{BB \ defect \ within \ AlGaN}$
- Larger 2.2 eV threshold feature \rightarrow <u>higher YB defects with stress</u>
- Higher Drain-side vs. Source-side changes: consistent with DRCLS

AlGaN/GaN HEMT Physical Degradation Mechanisms

Strain- and Field-induced

Impurity Diffusion

M. Kuball, et al., Microelectron. Reliab. 51, 195 (2011)

Inverse Piezoelectric Effect

. O . G 0.0

(b)

E -2 0 eV

Photon Energy (eV)

E -2.0 e

Photon Energy (eV)

E -1.7 eV

del Alamo et al. Microelectron. Reliab., 49, 1200 (2009)

Multiple possible mechanisms that all create electronicallyactive defects

Electronically-Active Defect Formation

AlGaN/GaN HEMT Defect Location

- **BB** peak shifts with AlGaN \rightarrow <u>**BB** defect in AlGaN</u>
- Shifted AlGaN NBE and BB features appear only when excitation reaches 40 nm Al_{0.22}Ga_{0.78}N layer → Additional piezoelectric strain field

Conclusions

- DRCLS measures electric field-induced stress and current-induced heating on a nanoscale *during* OFF-state and ON-state operation
- KPFM maps reveal expanding low potential patches where defects form and device failure will occur
- Separation of field- vs. current-induced degradation demonstrates their relative impact on AlGaN/GaN reliability
- Nanoscale patch potential and defect evolution inside AlGaN vs. V_{DG} threshold effect at drain-side gate foot support inverse piezoelectric degradation model