InAs HEMTs: the path to THz electronics?

J. A. del Alamo Microsystems Technology Laboratories, MIT

Short Course on: High-Performance narrow-bandgap HEMT technology for advanced microwave front-ends: Towards the end of the roadmap?

Acknowledgements: Dae-Hyun Kim, Tae-Woo Kim, Niamh Waldron Sponsors: FCRP-MSD, Intel Corp., SRC Labs at MIT: MTL, SEBL, NSL

III-V HEMT: record f_T vs. time

For >20 years, record f_T obtained on InGaAs-channel HEMTs

III-V HEMT: record f_T vs. time

InGaAs-channel HEMTs offer record balanced f_T and f_{max}

Record f_T III-V HEMTs: megatrends

Over time: $L_g \downarrow$, $In_x Ga_{1-x} As$ channel $x_{InAs} \uparrow$

Record f_T III-V HEMTs: megatrends

Over time: $t_{ch} \downarrow$, $t_{ins} \downarrow$

Outline

- 1. Example of high-frequency InAs HEMT
- 2. f_T measurements
- 3. f_T analysis
- 4. How to improve f_T
- 5. Limits to HEMT scaling and future prospects

1. Example of high-frequency InAs HEMT

Kim, EDL 2010

- QW channel (t_{ch} = 10 nm):
 - InAs core (t_{InAs} = 5 nm)
 - InGaAs cladding
- $\mu_{n,Hall} = 13,200 \text{ cm}^2/\text{V-sec}$
- InAIAs barrier (t_{ins} = 4 nm)
- Ti/Pt/Au Schottky gate
- L_g=30 nm
- L_{side}=150 nm

L_g=30 nm InAs HEMT

- Large current drive: I_{ON} >0.5 mA/µm at V_{DD}=0.5 V
- V_T = -0.15 V, R_S=190 Ohm.μm
- High transconductance: g_{mpk} = 1.9 mS/µm at V_{DD}=0.5 V

L_g=30 nm InAs HEMT

- Only transistor of any kind with both f_T and f_{max} > 640 GHz at same bias point
- Subthreshold characteristics:

- S = 74 mV/dec, DIBL = 80 mV/V, $I_{on}/I_{off} \sim 5 \times 10^3$

2. f_T measurements

- Extraordinary claims demand extraordinary evidence!
- Verification of f_T and f_{max} measurements:
 - 1. Gummel technique
 - 2. Small-signal equivalent circuit model
 - 3. Measurements on multiple devices
 - 4. Measurements on multiple test benches

Gummel technique for f_T **extraction**

In one-pole system:

$$h_{21}(f) = \frac{h_{21}(DC)}{1 + jf \frac{h_{21}(DC)}{f_T}}$$

Then:
$$Im[\frac{1}{h_{21}(f)}] = \frac{f}{f_T}$$

Slope gives f_T
$$Mag = 0.1 V$$

$$Frequency [Hz]$$

Kim, EDL 2008

Gummel, Proc IEEE 1969

f_T extraction from equivalent-circuit model

Small-signal equivalent circuit model in linear and saturation regimes at V_{GS} of peak f_T :

Extrapolation from small-signal model yields:

Also model S parameters (see below)

Measurements on multiple devices and systems

Measurements of one device in three different test benches:

		8510C @MIT	8510C @TSC	PNA @UCSB	Avg.	STD
f _T [GHz]	From H ₂₁	645	645	643	644.3	0.9
	From Gummel's	644	644	645	644.3	0.5
	арргоаст					
f _{max} [GHz]		681	686	677	681.3	3.7

Kim, EDL 2010

Measurement of three devices on one test bench:

→ f_T =645, 644, 644 GHz.

All measurements at same bias point: V_{GS}=0.2 V, V_{DS}=0.5 V

• First-order f_T expression for HEMT:

$$f_T = \frac{1}{2\pi} \frac{g_{mi}}{C_{gs} + C_{gd} + g_{mi}(R_S + R_D)[C_{gd} + (C_{gs} + C_{gd})\frac{g_{oi}}{g_{mi}}]}$$

Break out parasitic capacitances

• Capacitance components:

$$C_{gs} = C_{gsi} + C_{gsext}$$

$$C_{gd} = C_{gdi} + C_{gdext}$$

Delay time analysis

• Delay time:

$$\tau = \frac{1}{2\pi f_T} = \tau_t + \tau_{ext} + \tau_{par}$$

• Components of delay time:

Extraction of parasitic capacitances

- Need devices with different L_a
- Bias them at same V_{GS} overdrive around peak f_T point
- Extract small-signal equivalent circuit models
- Study L_q scaling behavior of C_{qs} and C_{qd}

Delay components of L_g=30 nm InAs HEMT

InAs HEMTs

(f_t=601 GHz, f_{max} =609 GHz at L_g=30 nm) Kim, IEDM 2008

Scaling of delay components

 τ_{ext} and τ_{par} do not scale, become dominant for L_g< 60 nm

4. How to improve f_T

• Intrinsic delay:

$$\tau_t = \frac{C_{gsi} + C_{gdi}}{g_{mi}} = \frac{L_g}{v_e}$$

→ $L_g \downarrow$ (without degrading g_{mi}) → $v_e \uparrow$ → channel engineering

• Extrinsic delay:

$$\tau_{ext} = \frac{C_{gsext} + C_{gdext}}{g_{mi}}$$

→ C_{gsext} , $C_{gdext} \downarrow$ → gate engineering → $g_{mi} \uparrow$ → harmonious scaling

How to improve f_T

• Parasitic delay:

$$\tau_{par} = (R_S + R_D) [C_{gd} + (C_{gs} + C_{gd}) \frac{g_{oi}}{g_{mi}}]$$

→ $R_S + R_D \downarrow$ → increase electrostatic integrity: $g_{oi}/g_{mi}\downarrow$

How far can we expect to go?

 $f_t=1$ THz feasible even at $L_g=30$ nm

a) $R_s + R_D \downarrow$

- In typical HEMTs:
 - large G-S, G-D gaps
 - barrier in extrinsic region
 - limited electron concentration in extrinsic channel

Approaches to reducing barrier and $n_{s,ext} \uparrow$

• InAs-rich InAIAs sub-barrier:

Kim, Electron Lett 2011

Approaches to reducing barrier and $n_{s,ext} \uparrow$

• Dual delta-doping in barrier:

Kim, IEDM 2010

Approaches to reducing L_{GS} and L_{GD}

- Heterostructure with dual delta doping in InAlAs
- Dry-etched Mo contacts: $R_c = 7$ Ohm.µm, stable to 600 °C
- L_G =50 nm, R_S =144 Ohm.µm, g_m =2.2 mS/µm @ V_{DS} =0.5 V

$L_g = 60 \text{ nm self-aligned In}_{0.7}Ga_{0.3}As \text{ HEMT}$

- Good agreement between modeled and measured HF characteristics
- Highest f_T and f_{max} at $L_g \ge 60$ nm of any FET

b) Increase electrostatic integrity: $g_{oi}/g_{mi}\psi$

Sources of output conductance in InAs HEMTs:

- impact ionization: slow \rightarrow irrelevant at RF
- drain-induced barrier lowering (DIBL)

Drain-Induced Barrier Lowering (DIBL)

- Negative shift of V_T with V_{DS}
- Due to reduction in channel barrier as V_{DS} \uparrow

Drain-Induced Barrier Lowering (DIBL)

The role of t_{ch} in f_T

c) L_g↓ without degrading g_{mi}

Kim, TED 2008

Kim, IPRM 2010

Harmonious scaling required: as $L_g \downarrow \rightarrow t_{ch} \downarrow$, $t_{ins} \downarrow$

Aspect ratio of record f_t devices

- Channel aspect ratio between 2 and 4
- Insulator aspect ratio between 2 and 8 (2 likely an underestimate)

5. Limits to HEMT scaling and future prospects

Barrier thickness scaling limited by I_G

del Alamo, IPRM 2011

Alternative insulators

High-K dielectrics being pursued for III-V CMOS → huge opportunity for THz HEMT electronics!

Limits to HEMT scaling

Deep channel thickness scaling degrades performance: $\rightarrow R_{s} \uparrow \rightarrow f_{T} \downarrow$

Noticeable mobility degradation: t_{ch} =10 nm $\rightarrow \mu_e$ =13,500 cm²/V.s t_{ch} =5 nm $\rightarrow \mu_e$ =9,950 cm²/V.s

Kim, IPRM 2010

Channel strain engineering

InAs 300 K quantum-well mobility vs. lattice constant:

Independent control of channel strain and composition: → new possibilities for channel design

THz HEMTs: possible designs

Etched S/D QW-MOSFET

Regrown S/D QW-MOSFET

Gate-all-around nanowire FET

Conclusion

- THz HEMTs just around the corner
- Expanding interest on III-V CMOS: huge opportunity for THz HEMT electronics
 - → fast technology progress
 - \rightarrow new processes and tools
 - \rightarrow fundamental research on transport, etc.
 - \rightarrow Si as substrate for THz electronics

