Injection Velocity in Thin-Channel InAs HEMTs

Tae-Woo Kim and Jesús A. del Alamo Microsystems Technology Laboratories MIT

Sponsors: Intel, FCRP-MSD

IPRM

Fabrication: MTL, NSL, SEBL at MIT

Acknowledgement: Dae-Hyun Kim (Teledyne Scientific)

May 24th, 2011

Injection Velocity in III-V QW FETs

- Injection velocity: average velocity of electrons at virtual source
 - sets I_{ON} which determines switching speed
- Recent measurements of v_{ini} in InAs HEMTs:

- $v_{inj}(InAs) > 2v_{inj}(Si)$ at less than half V_{DD}
- Derived v_{inj} values consistent with purely ballistic transport

Role of channel thickness in QW-FET scalability

- Dramatic improvement in short-channel effects in thin-channel devices
- Concern: v_{ini} degradation in thin-channel devices?

Extraction methodology for v_{inj}

$$I_{D} = Q_{i_x0} \times V_{inj} \Rightarrow V_{inj} = \frac{I_{D}}{Q_{i_x0}}$$

- I_D: measured drain current
- Q_{i_x0} : sheet-charge density

 $Q_{i_x0} = \int C_{gi} \, dV_{GS,i}$

with $C_{gi} @ V_{DS} = 10 \text{ mV}$

- C_{gi} extracted from S-parameters
- R_s and R_D correction:

 $V_{DSi} = V_{DS} - I_D \times (R_S + R_D)$ $V_{GSi} = V_{GS} - I_D \times R_S$

- V_{T} roll-off correction
- DIBL correction

Thin-channel InAs HEMTs

Reference:

- InAs HEMT with $t_{ch} = 10 \text{ nm}$
- μ_{n,Hall} = 13,500 cm²/V-sec

Kim, IEDM 2008

- Triple-step gate recess process
- Gate metal stack: Ti/Pt/Au
- L_g = 40 ~ 200 nm
- L_{side} = 80 nm, t_{ins} = 3, 7 nm

I-V Characteristics: $L_g = 40 \text{ nm with } t_{ins} = 3 \text{ nm}$

- $V_T = 0.11 \text{ V}, \text{ S} = 65 \text{ mV/dec}, \text{ DIBL} = 50 \text{ mV/V}$
- $g_m = 1.6 \text{ mS}/\mu m$, $R_s = 275 \text{ Ohm}-\mu m$

Extraction of Q_{i_x0}

- C_{gi} extracted from S-parameters @ $V_{DS} = 10 \text{ mV}$
- Parasitic capacitance removed

v_{inj} of $L_g = 40 \text{ nm } t_{ins} = 3 \text{ nm } InAs \text{ HEMTs}$

- V_{DS} \uparrow \rightarrow v_{inj} \uparrow (device driven into saturation)
- V_{GSi}-V_T ↑ → v_{inj} initially ↑ (because Q_{i_xo} ↑)
 → then v_{ini} ↓ (device driven into linear regime)

v_{inj} - impact of channel thickness

In thin-channel devices:

- Long L_g: v_{inj} decreases right along with μ_e (~23%)
- Short L_g: v_{ini} relatively unaffected

 \rightarrow consistent with ballistic transport

Conclusions

- Thin-channel InAs HEMTs with t_{ch}=5 nm:
 - Evidence of mobility degradation
 - Small degradation in injection velocity for short L_g FETs:

$$v_{inj} = 3.3 \times 10^7$$
 cm/s at $L_g = 40$ nm

- Great scaling potential of thin-channel FETs
- Key question:
 - Can v_{ini} be preserved if severe μ degradation (~3000 cm²/V.s)?