III-V CMOS: What have we learned from HEMTs?

J. A. del Alamo, D.-H. Kim¹, T.-W. Kim, D. Jin, and D. A. Antoniadis

Microsystems Technology Laboratories, MIT ¹presently with Teledyne Scientific

23rd International Conference

on Indium Phosphide and Related Materials

Berlin, May 22-26, 2011

Acknowledgements:

- Sponsors: Intel, FCRP-MSD
- Labs at MIT: MTL, NSL, SEBL

Outline

- Why III-Vs for CMOS?
- What have we learned from III-V HEMTs
- III-V CMOS device design and challenges
- Conclusions

CMOS scaling in the 21st century

- Si CMOS has entered era of "power-constrained scaling":
 - Microprocessor power density saturated at ~100 W/cm²
 - Microprocessor clock speed saturated at ~ 4 GHz

Consequences of Power Constrained Scaling

Power = active power + stand-by power

→ Transistor scaling requires reduction in supply voltage
 → Not possible with Si: performance degrades too much

How III-Vs allow further V_{DD} reduction?

- Goals of scaling:
 - reduce transistor footprint

How III-Vs allow further V_{DD} reduction?

- Goals of scaling:
 - reduce transistor footprint

- III-Vs:
 - higher electron velocity than Si \rightarrow $I_{\rm ON}$ \uparrow
 - tight carrier confinement in quantum well \rightarrow S \downarrow \rightarrow V_{DD} \downarrow

What have we learned from III-V HEMTs?

State-of-the-art: InAs HEMTs

Kim, EDL 2010

- QW channel ($t_{ch} = 10 \text{ nm}$):
 - InAs core (t_{InAs} = 5 nm)
 - InGaAs cladding
- $\mu_{n,Hall} = 13,200 \text{ cm}^2/\text{V-sec}$
- InAlAs barrier ($t_{ins} = 4 \text{ nm}$)
- Ti/Pt/Au Schottky gate
- L_g=30 nm

L_g=30 nm InAs HEMT

- Large current drive: I_{ON} >0.5 mA/µm at V_{DD}=0.5 V
- V_T = -0.15 V, R_S=190 ohm.μm
- High transconductance: g_{mpk} = 1.9 mS/µm at V_{DD}=0.5 V

L_g=30 nm InAs HEMT

- Only transistor of any kind with both f_T and $f_{max} > 640$ GHz
- S = 74 mV/dec, DIBL = 80 mV/V, $I_{on}/I_{off} \sim 5 \times 10^3$
- All FOMs at V_{DD} =0.5 V

InAs HEMTs: Benchmarking with Si

 FOM that integrates short-channel effects and transport: I_{ON} @ I_{OFF}=100 nA/µm, V_{DD}=0.5 V

InAs HEMTs: higher I_{ON} for same I_{OFF} than Si: Why?

Why high I_{ON}?

1. Very high electron injection velocity at the virtual source

- v_{ini}(InGaAs) increases with InAs fraction in channel
- $v_{inj}(InGaAs) > 2v_{inj}(Si)$ at less than half V_{DD}
- ~100% ballistic transport at L_a ~30 nm

Why high I_{ON}?

2. Quantum capacitance less of a bottleneck than previously believed

Biaxial strain + non-parabolicity + strong quantization: $m_{||}^{*} \uparrow \rightarrow C_{G} \uparrow \rightarrow n_{s} \uparrow \rightarrow I_{ON} \uparrow$

Why high I_{ON}?

3. Sharp subthreshold swing due to quantum-well channel

- Dramatic improvement in short-channel effects with thin channel
- Thin channel does not degrade v_{ini} at L_q~40 nm (Kim, IPRM 2011)

Limit to III-V HEMT Scaling: Gate Leakage Current

→ Further scaling requires high-K gate dielectric

III-V CMOS: device design and challenges

Modern III-V HEMT vs. modern Si MOSFET:

III-V HEMT

Intel's 45 nm CMOS

- What do we preserve?
- What do we change?

III-V CMOS: HEMT features worth preserving

- Quantum-well channel: key to scalability
- Undoped channel:
- InAs-rich channel:
- └ for high mobility and velocity
- Buried-channel design: -
- Raised source and drain regions: essential for scalability
- Undoped QW channel in extrinsic regions: key to low access resistance

III-V CMOS: HEMT features to change

- Schottky gate: need MOS gate with very thin high-K dielectric
- T-gate: need rectangular gate
- Barrier under contacts: need to eliminate
- Alloyed ohmic contacts: change to refractory ohmic contacts
- Source and drain contacts: need self-aligned with gate
- Footprint: need to reduce by 1000 X!

III-V CMOS: other critical needs

- p-channel MOSFET: with performance >1/3 that of n-MOSFET
- Co-integration of n-FET and p-FET on Si: compact, planar surface

III-V CMOS: other designs

Etched S/D QW-MOSFET

Regrown S/D QW-MOSFET

Gate-all-around nanowire FET

The high-water mark: Intel's InGaAs Quantum-Well MOSFET

- Direct MBE on Si substrate (1.5 μ m buffer thickness)
- InGaAs buried-channel MOSFET (under 2 nm InP barrier)
- 4 nm TaSiO_x gate dielectric by ALD, L_q =75 nm
- First III-V QW-MOSFET with better performance than Si

More recent notable work

InAs Nanoribbon MOSFETs on Insulator (UC Berkeley) Ko, Nature 2010

Al₂O₃/InGaSb QW-MOSFET (Stanford) Nainani, IEDM 2010

Aspect Ratio Trapping (Amberwave)

Fiorenza, ECS 2010

Ge p-type QW-MOSFET (Intel) Pillarisetty, IEDM 2010

Self-aligned QW-FET (MIT)

Kim, IEDM 2010

InGaAs FinFET (Purdue, Intel) Wu, IEDM 2009 Radosavljevic, IEDM 2010

Conclusions

- III-V HEMTs suggest strong potential for III-V CMOS:
 - InAs electron injection velocity > 2x that of Si at 1/2x V_{DD}
 - Quantum capacitance less of a bottleneck than previously believed
 - Quantum-well channel yields outstanding short-channel effects
- Impressive recent progress on III-V CMOS
 - Sub-100 nm InGaAs MOSFETs with I_{ON} > than Si at 0.5 V demonstrated
- Lots of work ahead
 - Demonstrate ~10 nm III-V N-MOSFET that is better than Si
 - P-channel MOSFET
 - N-channel + P-channel cointegration on Si