Planar View of Structural Degradation in GaN HEMT: Voltage, Time and Temperature Dependence

Jungwoo Joh¹, Prashanth Makaram² Carl V. Thompson² and Jesús A. del Alamo¹

¹Microsystems Technology Laboratories, ²Material Processing Center Massachusetts Institute of Technology, Cambridge, MA, USA

> Acknowledgements: ARL (DARPA WBGS program) ONR (DRIFT-MURI) TriQuint Semiconductor ¹

Introduction

- GaN HEMT Reliability: big concern
 - RF power degradation

 $-I_D$ decrease, R_D increase, I_G increase, V_T change...

• Goal: understand degradation mechanism

High Voltage Degradation in GaN HEMTs

 I_D , R_D , and I_G start to degrade beyond critical voltage (V_{crit}) (+ trapping behavior – current collapse) Common physical origin in I_D and I_G degradation

3

Permanent vs. Trapping Degradation

13 % permanent degradation + 15 % trapping degradation

Joh, ICNS 2009 ⁴

Material Degradation around V_{crit}

How do these defects extend along the device width?

Plan View Approach

- Limitations of *TEM*:
 - Costly
 - Extremely local
- This work: (details in Makaram, APL 2010)
 - Removal of SiN passivation and gate
 - SiN passivation: HF etch
 - Contact and gate metals: aqua regia
 - Surface cleaning: piranha solution
 - Plan view imaging through SEM and AFM

SiN and Gate Removal

Unstressed (high T storage)

Stressed (> V_{crit})

7

Voltage Acceleration

- OFF-state step stress:
 - $-V_{GS}$ =-7 V
 - V_{DS} stepped from 5 to 8, 12, 35, 50 V (1 min/1 V step)
 - $-T_{base}$ =150 °C
- Detailed device characterization:
 - DC device parameters: I_{Dmax} , R_S , R_D , V_T ...
 - Trap characterization: current collapse
- Removal of passivation and gate metal
- SEM and AFM plan view imaging

Voltage Acceleration

Initial continuous groove formation Deeper pit formation along the groove

Pit Cross Section Area

Pit formation is voltage accelerated. Drain side pit area also shows critical behavior.

Correlation between Electrical and Structural Degradation

Good correlation between electrical degradation and pit area

Degradation Process

Cross-section

1. Below and around V_{crit}: Groove formation in GaN cap

2. Beyond V_{crit}: Pit formation in AlGaN barrier

3. Pit growth (to AlGaN/GaN interface) and merge

Consistent behavior Complimentary techniques

Plan-view

Time Evolution – Electrical Degradation

Current collapse tends to saturate. Permanent degradation keeps increasing.

Time Evolution – SEM

V_{DS}=0, V_{GS}=-40 V, T_{base}=150 °C

Very fast groove formation (10 s) on both sides. Pit density/size increase with time.

Average pit area (~pit volume) ~ t^{1/4}

Electrical vs. Structural Degradation

Good correlation between electrical and structural degradation.

Temperature Dependence

Linear defect density (~1/degradation rate) is thermally activated with E_a~0.11 eV

Degradation Mechanisms

- Groove formation: fast process
 - Field induced oxidation?
 - Electrochemical etching?
- Pit formation: slow process
 - E-field driven (Little current is needed)
 - Thermally activated
 - Field/stress induced diffusion of material away from gate?
- In any event, mass transport is involved.

Summary

- Developed a simple process for plan-view assessment of structural degradation
- Evolution of structural damage:
 - Below V_{crit}: shallow continuous groove formation at gate edge
 - Above V_{crit}: local pit formation along the groove
 - Pits grow with V_{stress} and time and merge
 - Pit formation is thermally activated.
- Field/stress induced mass transport is involved in GaN HEMT degradation

