GaN HEMT Reliability

J. A. del Alamo and J. Joh Microsystems Technology Laboratories, MIT

ESREF 2009

Arcachon, Oct. 5-9, 2009

Acknowledgements:

ARL (DARPA-WBGS program), ONR (DRIFT-MURI program)

Jose Jimenez, Sefa Demirtas

1. Introduction: GaN Reliability

- GaN HEMT: commercial technology since 2005
- Great recent strides in reliability:
 - MTTF=10⁷ h at 150 C and 40 V demonstrated [Jimenez, IRPS 2008]
- Unique issues about GaN HEMT reliability:
 - No native substrate (use SiC, Si, sapphire) \rightarrow mismatch defects
 - High-voltage operation \rightarrow very high electric fields (~10⁷ V/cm)
 - Strong piezoelectric materials: high electric field → high mechanical stress
 - Electron channel charge set by polarization, not dopants
- Work to do before demonstrating consistent, reproducible reliability with solid understanding behind:
 - When will we be able to put GaN in space?

Outline

- 1. Introduction
- 2. Experimental
- 3. Results
- 4. Hypothesis for high-voltage degradation mechanism:
 - Defect formation through inverse piezoelectric effect
- 5. Discussion
- 6. Conclusions

2. Experimental

GaN HEMT Reliability Test Chip

- 3.25 x 3.175 mm²
- DC and mmw HEMTs
- HEMTs with different dimensions (L_{rd}, L_{rs}, L_g, W_g, #fingers)
- HEMTs with different orientations (0, 30°, 60°, 90°)
- TLM's, side-gate FET, FATFET
- Most devices completed before vias
- Implemented by BAE, TriQuint and Nitronex with own design rules

DC Stress Experiments

Characterization Suite

• Comprehensive, three sets of measurements:

-*Coarse characterization*: basic device parameters

–Fine characterization: + complete set of I-V characteristics (output, transfer, gate, subthreshold, kink)

-*Trap analysis*: transient analysis under various pulsing conditions

• Fast.

-Coarse characterization: <20 secs

-Fine characterization: <1 min

-Trap analysis: <10 min

• Frequent:

-Coarse characterization: every 1-2 mins

-Fine characterization, trap analysis: before, after, at key points

• "Benign":

-100 executions to produce change <2% change in any extracted parameter

DC Stress Schemes

- Stress-recovery experiments:
 - to study trapping behavior
- Step-stress experiments:
 - to study a variety of conditions in a single device (for improved experimental efficiency)
- Step-stress-recovery experiments:
 - to study trap formation under different conditions in a single device

Electrical Stress Bias Points

Low current, high field in barrier, low field in buffer

Typical GaN HEMT

Standard device with integrated field plate :

- L_G=0.25 um, W=4x100 um
- f_T=40 GHz, I_{Dmax}=1.2 A/mm
- P_{out}=8 W/mm, PAE=60% @ 10 GHz, V_D=40 V

Test device: W=2x25 um

3. Results: V_{DS}=0 Degradation

 V_{DS} =0 step-stress; V_{DG} : 10 to 50 V, 1 V/step, 1 min/step

 V_{DS} =0 step-stress; V_{DG} : 10 to 50 V, 1 V/step, 1 min/step

Critical voltage for degradation:

At V_{crit} \approx 21 V, I_{Goff} increases ~100X, I_{Dmax}, R_S, R_D start degrading

At V_{crit}≈21 V, |I_{gstress}|<10 mA/mm

 \rightarrow self-heating, hot electrons not responsible for V_{crit} degradation

OFF-state Degradation

OFF-state step-stress: V_{GS} =- 5 V; V_{DS} : 5 to 45 V, 1 V/step, 1 min/step;

- Critical behavior, but $V_{crit} \approx 34 \text{ V} \rightarrow V_{crit}$ depends on detailed bias
- R_S does not degrade
 I_{GDoff} ↑, I_{GSoff} unchanged
 Drain side degrades, source side intact

High-Power Degradation

High-power step-stress (fixed I_{Dstress}); V_{DS}: 5 to 40 V, 1 V/step, 1 min/step

Critical behavior, but $\mathrm{I}_{\mathrm{Dstress}}\uparrow \rightarrow \mathrm{V}_{\mathrm{crit}}\uparrow$

Joh, IEDM 2007

 \rightarrow Current is not accelerating factor

Trapping in stressed devices

- I_G follows same trapping behavior as I_D

 \rightarrow common physical origin for I_G and I_D degradation

- In recovery phase: I_{Dmax} , I_{Goff} \rightarrow trapped electrons block I_{G}
- I_{Gon} steady → traps not accessible from channel?

Are traps also generated at V_{crit}?

- V_{DS}=0 step-stress-recovery experiment with *diagnostic pulse*
 - 10 min step, 5 min recovery, 2.5 V/step
- Under light to speed up recovery

Trap density vs. damage in GaN HEMT

 V_{crit} : onset of I_G , I_D , R_S , R_D degradation and trap formation

Other Reports of Critical Voltage Behavior

MM

4. Hypothesis for high-voltage degradation mechanism

1. Defects in AlGaN

Hypothesis for high-voltage degradation mechanism

- 2. Defects originate from excessive mechanical stress
- introduced by high electric field through inverse piezoelectric effect
- concentrated at gate edge
- builds on top of lattice mismatch stress between AlGaN and GaN
- when elastic energy density in AlGaN exceeds critical value

Role of V_{GS}

OFF-state step-stress experiments at different V_{GS} :

High-field on source side adds to stress on drain side

Role of Gate Length

 V_{DS} =0 step-stress experiments for different L_{G}

Role of Mechanical Strain

External tensile strain $\uparrow \rightarrow V_{crit} \downarrow$

 \rightarrow reveals mechanical origin of degradation

Crack and pits in stressed GaN HEMTs

ON-state degradation at 40 V, I_D =250 mA/mm, T_a =112 C

Physical degradation correlates with electrical degradation

Other observations of damage at edges of gate

Gate current degradation correlates with elecroluminescence from gate edges

5. First-order model for V_{crit}

- Key assumption: at V_{crit}, elastic energy density in AlGaN reaches critical value
 - Electrical model: 2D electrostatic simulator (Silvaco Atlas)
 - Mechanical model: analytical formulation of stress and elastic energy vs. electric field Joh, ROCS 2009

First-order model for V_{crit}

- Example: 16 nm thick AlGaN with x=28%
- V_{crit} condition in OFF-state (V_{GS} =-5 V, V_{DS} =33 V)

Large peak of electric field and elastic energy density under gate edge on drain side Joh, ROCS 2009

Elastic energy density in AlGaN vs. V_{DG}

Joh, ROCS 2009

 W_{crit} corresponding to V_{crit} consistent with value for onset of relaxation of AlGaN/GaN heterostructures

Impact of AIGaN composition on V_{crit}

Joh, ROCS 2009

 $x(AIN) \downarrow \rightarrow initial elastic energy \downarrow \rightarrow V_{crit} \uparrow \uparrow$

Consequences: HEMT reliability improved if...

- 1. Elastic energy density in AlGaN barrier is minimized:
- Thinner AlGaN barrier [Lee 2005]
- AIGaN with lower AIN composition [Gotthold 2004, Valizadeh 2005, Jimenez 2009]

- 1. Elastic energy density in AlGaN barrier is minimized (cont.):
- AlGaN buffer layer [Joh 2006]
- No AIN spacer [ref?]

Consequences: HEMT reliability improved if...

- 2. AIGaN barrier is mechanically strengthened:
- GaN cap [Gotthold 2004, Ivo 2009, Jimenez 2009]
- SiN passivation [Mittereder 2003, Edwards 2005, Derluyn 2005, Marcon 2009]

Consequences: HEMT reliability improved if...

3. Electric field across AlGaN at gate edge is minimized:

- Field plate [Lee 2003, Jimenez 2006]
- Longer gate-drain gap [Valizadeh 2005]
- Add GaN cap [lvo 2009, Ohki 2009]
- Rounded gate edge [ref?] 0.5

Jimenez, ROCS 2006

Many unknowns

- What is the detailed nature of the defects at the gate edge?
 - Crack?
 - Metal diffusion down crack?
 - Aggregation of dislocations?
 - Other crystalline defects
- Role of stress gradient?
- Role of time?
- Role of temperature?
- Hot electron damage in high-power state?
- Are these mechanisms relevant under large RF drive?
- Why spatial variations?
- Role of buffer?
- Role of surface and surface treatments?

The surface matters...

Surface treatments prior to ohmic metal deposition and gate evaporation impact reliability

Jimenez, TWHM 2009

6. Conclusions

- Unique degradation aspects of AlGaN/GaN HEMTs with relevance to degradation
- Need fundamental research to provide understanding
- Many opportunities to improve reliability
- Not obvious today how to accelerate degradation to provide accurate estimation of MTTF
- Optimistic about long-term prospects of reliable GaN HEMTs

More materials

 V_{DS} =0 step-stress; V_{DG} : 10 to 50 V, 1 V/step, 1 min/step

