MIT iLabs: Towards a Community of Internet Accessible Laboratories

Jesus. A. del Alamo, Philip Bailey, James Hardison, V. Judson Harward, Steven R. Lerman, Phillip D. Long, MIT

Sloan-C International Conference on Asynchronous Learning Networks

November 19, 2005

NASSACHUSETTS DISTITUTE OF TECHNOLOGY

Sponsorship: Microsoft Corp., Carnegie Corp. of New York

Contents

 Motivation
iLabs at MIT
The iLab Shared Architecture
Outreach - sharing technology, innovating education

Motivation to iLabs

There is enormous educational value in handson laboratory experiences

But, conventional labs...... are expensive and have complex logistics

… can't easily be shared

iLabs (or "WebLabs"): real laboratories that are accessed through the Internet from anywhere at any time

Dynamic signal analyzer (EECS, deployed 2004)

Microelectronics device characterization (EECS, deployed 1998)

iLabs at MIT

Polymer crystallization (Chem. E., deployed 2003)

Shake table (Civil Eng., deployed 2004)

Heat exchanger (Chem. E., deployed 2001)

🏙 MIT Microelectronics WebLab - alamo - Oct 03, 2002 - 03:28:08 PM

MIT Microelectronics WebLab

Semiconductor Parameter Analyzer, Switching Matrix (donation of Agilent Technologies)

Device under test

Device test fixtures (donation of Agilent Technologies)

- W2000 server

Typical Assignment

Transistor characterization project:

- Measure transistor characteristics
- Extract transistor parameters
- Compare measurements with class models

Also, do whatever else you want with the transistor.

Microelectronics device characterization:

• over 3000 student users (for credit) since 1998

"Formal" use of WebLab

WebLab Capacity

mit

WebLab Capacity

mit

Shake Table

Goal:

Study behavior of building model structure to ground vibration

Relevance: Earthquake building engineering

Shake Table GUI

~

Shake Table WebLab

The iLab Vision

- More lab time to users
- More sophisticated labs available
- Communities of scholars created around iLabs sharing educational content

Conclusions

iLabs will enhance science and engineering education iLabs and their educational content will be broadly shared around the world iLabs provide a path for the developed world to support education in the developing world **iLabs Shared Architecture: scalable** framework for iLabs, well suited to needs of developing world

The iLabs Architecture

A detailed look

iLab Design Goals

- Scaling usage of online labs to a large number of users
- Encouraging researchers and universities to share their labs online
- Single sign on to labs at multiple universities
- Freeing lab owner/operator from administration (i.e. authentication, authorization, storage of results, archiving of data, etc.) of users from other universities
 - Allowing universities with diverse network infrastructures to interoperate and share resources

Project Boundaries

 Our architecture doesn't deal with specific hardware and software interfaces to lab equipment

 Our architecture is intended to be compatible and complementary with commercial software such as National Instruments LabView and analysis packages like Matlab

iLab Generic Services

 User authentication (and registration)
User authorization and credential (group) management
Experiment specification and result storage
Lab access scheduling

Topology of "1st Generation" online labs

 \diamond

Client

- Lab developer responsible for 100% of development
 - Long time to deployment
- Lab owner responsible for 100% of management
- The lab itself
- User accounts, data storage, authentication, security

Students need multiple accounts to access multiple labs

The Case for Web Services

- Web services represent the latest version of an old concept -- they allow one computer to invoke a procedure (method) on another.
- They are platform and vendor independent (we have already successfully bridged a Java client ⇔ a Windows XP/.NET Service Broker ⇔ a Windows 2000 lab server (with NI GPIB).
- Because they are usually based on http that we all use to access the web, they work well with campus networks.
- The iLab Shared Architecture builds on top of the current generation of web services.

iLab Experiment Typology, 1 3 Waves of Development

Batched Experiments (2003-2005):

- The entire specification of the experiment is determined before execution begins.
- The user need not remain online while experiment executes.

Interactive Experiments (2004-2006):

- The student client portrays virtual lab equipment (GUI).
- The student can interact with experiment throughout its course.

iLab Experiment Typology, 2 3 Waves of Development

Sensor Experiments (2005-2007?):

- Publish and subscribe based architecture
- > Triggers and event-driven data monitoring
- > Flexible data analysis
- > Data archive

iLabs Design Strategy

Separate responsibilities of the lab provider from those of the teaching faculty

- The lab provider designs and makes the laboratory experiment available online in as effective a presentation as possible
- The teaching faculty register their own students, manage their accounts and result storage, and set course policy (e.g. can students collaborate)

Service Broker Responsibilities

The Service Broker is a domain independent server that

- stores and manages student experiment records;
- provides mechanism for but does not specify local campus course and privacy policy;
- authenticates users and transmits credentials but not user IDs to Lab Server;
- manages workflow between client and lab server

Lab Provider Responsibilities

The Lab Server team

- builds the lab server which must implement the web service methods that the Service Broker uses to forward experiments and retrieve results;
- usually supplies the student lab client software, which must implement the corresponding methods to allow the client to communicate with the Service Broker;

Student Web Session

1. User authenticates over SSL

2. SB lists user's groups

3. User chooses effective group for session.

4. SB lists available Lab Clients

5. User chooses Lab Client for session.

6. SB launches client.

Service Broker

Student Service Broker Session Life Cycle

- The student contacts the Service Broker (SB) via a standard web browser.
- The student either
 - > registers for a new account, or
 - > authenticates himself to the Service Broker (current implementation offers ID/password over SSL)
- The SB lists the student's group (class) memberships, and asks the student to choose an effective group for this session.
 - The SB lists the lab servers/clients available to that effective group, and asks the student to choose a client

Service Broker: Launching the Client

My Clients

Messages for this Group:

The WebLab 6.0 Lab Server is available and operating normally. Date Posted: 8/19/2004 11:02:45 AM

Lab Client: MIT Microelectronics Weblab

Version: 6.0 Graphical Applet

Description: The new Graphical client for Microelectronics **IMPORTANT:** This client requires Java Plugin 1.4.2 in orde below) for details. Mozilla Firefox users must disable popup documentation.

Contact Email: use the "Report a Bug" page if you have pr

Batched Experiment Submission Web Service Calls

1

Lab Client

4

returns Client-SubmissionReport contains

experimentID

Submit(experimentSpecification)

Service Broker

Lab Server

3

Submit(experiment-Specification)

> returns SubmissionReport

Batched Experiment Result Retrieval Web Service Calls

Service Broker Administrative Services

- Adding, modifying, and removing lab servers and clients.
- Adding, removing, or confirming user access.

 User management including assigning users to groups and modifying access rights.

Managing experiment records.

Batched Experiment Network Topology

In the batched experiment architecture, the client and the lab server communicate only through the Service Broker:

Preliminary Interactive Topology

Shaketable Prototype

Major Milestone, 5/2005: The 1st Prototype iLab Interactive Lab

Uses the new iLab interactive authorization (ticket) architecture

Does not disrupt the original implementation

iLabs Dissemination

iCampus Outreach

MIT iCampus Affiliates Program

World-wide scalability
Tiered model of engagement
Leveraging community

"Our academic community is very excited about iCampus."

Dr. Miguel A. Romero Director, Environmental Quality, ITESM

"We strongly believe that the development of advanced pedagogies with information technology requires a considerable investment, which can only be sustainable if the investment is amortized over a number of institutions"

> John Norman, Director, CARET University of Cambridge

http://icampus.mit.edu/ilabs

Supporting Adoption

iCampus Outreach for iLabs
Hub and spoke model
Community support
Workshops

- > Online discussion forum
- Seed grants to ease adoption barriers

iLab Partners Developer Support

Skype™ - jud_harward	3
File View Tools Call Help	
0 🗘 🐸 🙆 🚹 🔎	
🏠 Start 🕹 Contacts 🔳 Dial 🕀 Call List	
Skype Contacts (1/4)	
🔇 albert lumu	
3 Anders Selmer	
🕲 Warwick Bailey	
🔞 David Israel Mendez Balandran	
SkypeOut Contacts (empty)	
Q 👌	
😋 🗸 🛱 Online 2,650,088 Users Online	

Developer visits
Release of standard lab server and client modules
VolP conferencing
world-wide virtual development team

Video conference virtual meetings

Adoption Case Study University of Queensland

iLabs Website Download iLab software components Install, study, & ask questions

University of Queensland Beam Balancing Control Experiment

University of Queensland Beam Balancing Control Experiment

Write MatLab Control Program

Revise MatLab Control Program Upload to Server

Run Expt

Collect data & evaluate

Beam Balancing - the Movie

 \searrow

Exploring iLabs

- Visit <u>http://icampus.mit.edu/ilabs</u>
- Try out the public instance of WebLabs
 - <u>http://openilabs.mit.edu</u>
- Download documentation and code
 - http://icampus.mit.edu/iLabs/Architecture/Downl oads/default.aspx
- Contact us at
 - > icampus@mit.edu or longpd@mit.edu
- Talk to hub partners
 - Prof. Mark Schulz ITEE, UQ, mschulz@uciedu.au
 - Prof. Miguel Angel Romero Ogawa, <u>mromero@itesm.mx</u>

The Future of iLabs

The iLabs Foundation

Higher Ed

K-12

Commerce/Industry

Building a micro-economy of shared experiments

Foundation Non-Profit & Govt.

iLabs - Looking Ahead

iLabs Milestones & Future Directions

mit

iLab Intellectual Property Policy

- All MIT developed software has been and will continue to be made available for free under an open source license.
- We encourage but do not require our academic partners to follow the same policy. The decision to share their code and under what terms is theirs to determine.
- We allow industrial partners to develop commercial "shrink-wrapped" (supported) versions of the iLab components.

"If You Can't Come to the Lab... the Lab Will Come to You!"

(Earth at 89 GHz; courtesy of J. Grahn, Chalmers U.)

