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RF power applications
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Research activity by material and frequency

Compilation of research papers from IEEE Xplore by J. Scholvin
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RF power technologies: 1993 vs. 2003

Compilation of research papers from IEEE Xplore by J. Scholvin
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RF Power Figures of Merit

• PA specs:

– Frequency

– Power
– Gain
– Linearity
– Voltage
– Reliability 
– Power efficiency
– Cost

PA



Fundamental trade-off 
between voltage and frequency

scaling



Key to power: supply voltage
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The benefits of scaling
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Si CMOS: a disruptive technology for RF power?
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Si MOSFETs for RF power
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1. Extending LDMOS beyond 2 GHz 
2. RF power suitability of deeply scaled CMOS



1. Extending LDMOS beyond 2 GHz

(PhD Thesis of J. Fiorenza)
SourceSource

• Two critical sources of RF Loss:
– Gate resistance loss: reduces power gain
– Substrate loss: reduces power efficiency
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Low-loss gate: 
Metal/Poly-Si damascene gate

Advantages:

– Implemented in the back end of process
– Allows the use of Al or Cu: very low gate resistance
– Self-aligned: no increase in overlap capacitance 
– Gate oxide undisturbed

Achieved: 0.2 ohm/sqr (>10 for polySi, ~1 for silic’d gate)



Metal/Poly-Si Damascene Gate

3 μm

Source

Gate Drain

200 μm

Lg = 0.6 μm   ft ~ 15 GHz   BVoff > 18 V



0.6 μm minimum Lg

10 mask levels

2 levels of metal

Fabricated at MIT

Test chip



Benefit of low gate resistance: small signal

Damascene gate increases fmax, enables wide gate fingers
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Benefit of low gate resistance: large signal

High PAE with gate finger width up to 140 μm
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Low-loss substrates: 
SOI and high-resistivity Si

Substrate:

• Regular Si

• High-resistivity Si

Handle wafer:

• Regular Si

• High-resistivity Si
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Impact of substrate

• SOI improves PAE
• High-resistivity silicon improves PAE on bulk 
• High-resistivity silicon does not improve PAE on SOI



Beyond 2 GHz

Low-loss substrate very important at high frequencies



Analysis of substrate loss

Gate

Source

Drain Loss

Drain Pad

Pad Loss

• Pad Loss: 
• SOI effective

• HR effective on bulk Si and SOI

• Drain Loss:
• SOI somehow effective

• HR very effective on bulk Si, only moderately on SOI



Why is HRSOI Ineffective?

Drain Pad

Gate

Source

HRSOI

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rsub
Rsurf

Cbox

n+pn+

Surface inversion increases drain loss on HRSOI



Effect of substrate inversion in HRSOI-LDMOS
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• Eliminating substrate inversion improves PAE
• Most prominent at high frequencies



Impact of inversion layer elimination
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Impact of inversion layer elimination
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• Eliminating substrate surface effects improves performance:
– Particularly prominent in LDMOS due to large drain area
– Both linear and saturated performance
– Most prominent at high frequencies
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1. Extending LDMOS beyond 2 GHz 
2. RF power suitability of deeply scaled CMOS



2. RF power suitability of deeply scaled CMOS
(PhD Thesis of J. Scholvin)

Attractiveness of CMOS:
• System-on-Chip integration
• Low cost
• Low voltage
• Good device models
• Aggressive roadmap
• Wide flavor of devices available

Suitable for:
• High-volume, low cost consumer applications 
• Moderate frequencies (2-10 GHz)
• Medium power (<100 mW)
• Current: WLAN, Bluetooth, Cell-phone PA driver, WiMax/802.16

Picture from: 
http://www.intel.com/research/silicon/micron.htm#silicon

90 nm CMOS



• Concerns: CMOS scaling ⇒ Vdd ↓ ⇒ Pout ↓

• Possible solutions:
– Raise Vdd ⇒ impact on reliability
– Use I/O devices ⇒ not really scaling

Issues of CMOS for RF power

data for IEEE published CMOS 
PA devices and circuits



90 nm CMOS: 
there is a lot more than 90 nm devices!

• Includes devices with longer gate lengths and thicker 
gate oxides for I/O drivers and high V operation 

• Designed RF power devices in collaboration with IBM
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The benefits of scaling for RF

• Logic devices at optimized bias point have very high bandwidth
• But… power devices at class AB bias point have much less bandwidth
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RF power performance of
standard 90 nm devices

Vdd = 1 V, Id = 26 mA/mm
f = 2.2 GHz
48x16 µm (1 cell)
8 x 48x16 (8 cell)

• 1 cell:  Peak PAE = 66% at Pout = 12.5 dBm
• 8 cell:  Peak PAE = 59% at Pout = 20.2 dBm
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Linear performance of 90 nm CMOS

Vdd = 1 V
Id = 26 mA/mm
freq = 2.2 GHz
8x48x16 µm

• What is PAE at a given IM3 ?
– at IM3 = -35 dBc, PAE = 12% at Pout = 12 dBm 

• Exceeds WCDMA PA driver specs
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90 nm vs. 250 nm devices at 8 GHz

• At Vdd = 1 V,  90 nm has best PAE and Pout

• 250 nm device offers highest power density at Vdd=2.5 V 
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90 nm vs. 250 nm 

• 250 nm thick oxide device has higher Vds,sat
⇒ compresses earlier and softer ⇒ lower Pout and peak PAE

• As Vdd ↑ impact of Vds,sat decreases

90 nm, thin oxide 250 nm, thick oxide
Vgs = 1V Vgs = 2.4V

0.1V steps 0.2V steps



What about reliability?

For RF power, reliability 
related to ratio of:

• nominal Vdd

• to breakdown voltage

For RF power:

• 90 nm device expected to be more reliable at Vdd=1 V than 
250 nm device at 2.5 V
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Reliability: impact of output power

• Run device under continuous RF power conditions
• Measure drop in gain over time, define MTTF as 0.2 dB drop
• Power compression has huge impact on degradation

Vdd = 1.6 V
Id = 26 mA/mm
f = 8 GHz
48x16 μm
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Reliability: impact of Vdd

• For same Vdd, thick oxide is more reliable
– but thin oxide has better performance

• For identical lifetime, how does performance compare?

Impedances and RF 
power set for peak PAE

Id = 26 mA/mm
freq = 8 GHz
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Reliability: impact of Vdd

Impedances and RF 
power set for peak PAE

Id = 26 mA/mm
freq = 8 GHz
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• 90 nm thin ox. outperforms 250 nm thick ox. for high MTTF
– Low Vdd performance of 90 nm device much better than 250 nm device

PAE=58%, Pout=16.8 dBm
PAE=56%, Pout=15.6 dBm



Conclusions

• Metal-containing gates and low-loss substrates will 
project LDMOS to 5-6 GHz

• Deeply scaled CMOS suitable for RF power for:
– Moderate power levels (~100 mW)
– Very low operating voltage (~1 V and below)

• Scaling will project CMOS beyond 10 GHz

• Si-based RF power technologies will dominate many 
high-volume consumer applications:
– WLANs, bluetooth, cellphone PA drivers, RF tags, etc



MIT’s RF power measurement setup

– 1.8 - 18 GHz Maury ATS automatic load-pull system
– 8-inch Cascade on-wafer probe station
– Synthesized source with 10 W TWT-PA supplying up to 200 mW at DUT
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