Si CMOS for RF Power Applications

J. A. del Alamo MIT

Workshop on Advanced Technologies for Next Generation of RFIC 2005 RFIC Symposium June 12, 2005

Sponsors: DARPA, IBM, SRC

RF power applications

Power vs. frequency

Research activity by material and frequency

Compilation of research papers from IEEE Xplore by J. Scholvin

RF power technologies: 1993 vs. 2003

RF Power Figures of Merit

- PA specs:
 - Frequency
 - Power
 - Gain
 - Linearity
 - Voltage
 - Reliability
 - Power efficiency
 - Cost

Fundamental trade-off between voltage and frequency

Key to power: supply voltage

Key to frequency: efficiency

The benefits of scaling

Gate length scaling in III-V FETs and CMOS

Si CMOS: a disruptive technology for RF power?

Si MOSFETs for RF power

- 1. Extending LDMOS beyond 2 GHz
- 2. RF power suitability of deeply scaled CMOS

1. Extending LDMOS beyond 2 GHz

(PhD Thesis of J. Fiorenza)

LDMOSFET: Lightly-doped Drain MOSFET

- Two critical sources of RF Loss:
 - Gate resistance loss: reduces power gain
 - Substrate loss: reduces power efficiency

Low-loss gate: Metal/Poly-Si damascene gate

Advantages:

- Implemented in the back end of process
- Allows the use of Al or Cu: very low gate resistance
- Self-aligned: no increase in overlap capacitance
- Gate oxide undisturbed

Achieved: 0.2 ohm/sqr (>10 for polySi, ~1 for silic'd gate)

Metal/Poly-Si Damascene Gate

 $L_g = 0.6 \ \mu m \quad f_t \sim 15 \ GHz \quad BV_{off} > 18 \ V$

Test chip

0.6 µm minimum L_g
10 mask levels
2 levels of metal
Fabricated at MIT

Benefit of low gate resistance: small signal

Damascene gate increases f_{max}, enables wide gate fingers

Benefit of low gate resistance: large signal

High PAE with gate finger width up to 140 μ m

Low-loss substrates: SOI and high-resistivity Si

Bulk Si

Thin-film SOI

- Regular Si
- High-resistivity Si

- Handle wafer:
- Regular Si
- High-resistivity Si

Impact of substrate

- SOI improves PAE
- High-resistivity silicon improves PAE on bulk
- High-resistivity silicon does not improve PAE on SOI

Beyond 2 GHz

Low-loss substrate very important at high frequencies

Analysis of substrate loss

- HR effective on bulk Si and SOI
- Drain Loss:
 - SOI somehow effective
 - HR very effective on bulk Si, only moderately on SOI

Why is HRSOI Ineffective?

Surface inversion increases drain loss on HRSOI

Effect of substrate inversion in HRSOI-LDMOS

- Eliminating substrate inversion improves PAE
- Most prominent at high frequencies

Impact of inversion layer elimination

Impact of inversion layer elimination

- Eliminating substrate surface effects improves performance:
 - Particularly prominent in LDMOS due to large drain area
 - Both linear and saturated performance
 - Most prominent at high frequencies

Si MOSFETs for RF power

- 1. Extending LDMOS beyond 2 GHz
- 2. RF power suitability of deeply scaled CMOS

2. RF power suitability of deeply scaled CMOS (PhD Thesis of J. Scholvin)

Attractiveness of CMOS:

- System-on-Chip integration
- Low cost
- Low voltage
- Good device models
- Aggressive roadmap
- Wide flavor of devices available

Suitable for:

- High-volume, low cost consumer ap
- Moderate frequencies (2-10 GHz)
- Medium power (<100 mW)
- Current: WLAN, Bluetooth, Cell-phone PA driver, WiMax/802.16

NiSi Layer Silicon Gate Electrode 1.2 nm SiO₂ Gate Oxide

90 nm CMOS

Issues of CMOS for RF power

• Concerns: CMOS scaling $\Rightarrow V_{dd} \downarrow \Rightarrow P_{out} \downarrow$

- Possible solutions:
 - Raise $V_{dd} \Rightarrow$ impact on reliability
 - Use I/O devices \Rightarrow not really scaling

90 nm CMOS: there is a lot more than 90 nm devices!

- Includes devices with longer gate lengths and thicker gate oxides for I/O drivers and high V operation
- Designed RF power devices in collaboration with IBM

Oxide thickness	thin	medium	thick
	(14 A)	(22 A)	(51A)
Nominal voltage [V]	1.0	1.2	2.5
L _g = 90 nm	×		
L _g = 130 nm	X	X	
L _g = 250 nm	Х	X	×

The benefits of scaling for RF

- Logic devices at optimized bias point have very high bandwidth
- But... power devices at class AB bias point have much less bandwidth

RF power performance of standard 90 nm devices

• 1 cell: Peak PAE = 66% at P_{out} = 12.5 dBm

• 8 cell: Peak PAE = 59% at P_{out} = 20.2 dBm

What is PAE at a given IM₃?

- at IM_3 = -35 dBc, PAE = 12% at P_{out} = 12 dBm

• Exceeds WCDMA PA driver specs

90 nm vs. 250 nm devices at 8 GHz

- At V_{dd} = 1 V, 90 nm has best PAE and P_{out}
- 250 nm device offers highest power density at V_{dd}=2.5 V

90 nm vs. 250 nm

- 250 nm thick oxide device has higher $V_{ds,sat}$ \Rightarrow compresses earlier and softer \Rightarrow lower P_{out} and peak PAE
- As $V_{dd} \uparrow$ impact of $V_{ds,sat}$ decreases

What about reliability?

For RF power, reliability related to ratio of:

- nominal V_{dd}
- to breakdown voltage

For RF power:

• 90 nm device expected to be **more** reliable at V_{dd} =1 V than 250 nm device at 2.5 V

Reliability: impact of output power

- Run device under continuous RF power conditions
- Measure drop in gain over time, define MTTF as 0.2 dB drop
- Power compression has huge impact on degradation

Reliability: impact of V_{dd}

- For same V_{dd} , thick oxide is more reliable
 - but thin oxide has better performance
- For identical lifetime, how does performance compare?

Reliability: impact of V_{dd}

• 90 nm thin ox. outperforms 250 nm thick ox. for high MTTF

– Low V_{dd} performance of 90 nm device much better than 250 nm device

Conclusions

- Metal-containing gates and low-loss substrates will project LDMOS to 5-6 GHz
- Deeply scaled CMOS suitable for RF power for:
 - Moderate power levels (~100 mW)
 - Very low operating voltage (~1 V and below)
- Scaling will project CMOS beyond 10 GHz
- Si-based RF power technologies will dominate many high-volume consumer applications:
 - WLANs, bluetooth, cellphone PA drivers, RF tags, etc.

MIT's RF power measurement setup

- 1.8 18 GHz Maury ATS automatic load-pull system
- 8-inch Cascade on-wafer probe station
- Synthesized source with 10 W TWT-PA supplying up to 200 mW at DUT

References

- LDMOS:
 - Bengtsson: MTT 2003
 - Fiorenza: SOI Conf. 1999; MTT-S 2001; IEDM 2002, EDL 2001, 2003, 2005; TED 2002
 - Scholvin: IEDM 2003
 - Van der Heijden: MTT-S 2001
- 90 nm CMOS:
 - Ferndahl: MGWL 2003
 - Scholvin: IEDM 2004