
Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

The Microelectronics WebLab 6.0 – An Implementation Using Web Services and the
iLab Shared Architecture

J. Hardison, D. Zych, J. A. del Alamo, V. J. Harward, S. R. Lerman, S. M. Wang, K. Yehia,

C. Varadharajan

hardison@mit.edu, dzych@mit.edu, alamo@mit.edu, jud@mit.edu, lerman@mit.edu,
smwang@mit.edu, kyehia@mit.edu, charuv@mit.edu

Microsystems Technology Laboratories and Center for Educational Computing Initiatives,

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract⎯ We have developed and deployed a new version of the MIT Microelectronics WebLab that has been constructed
around the iLab Shared Architecture. The MIT Microelectronics WebLab (or simply WebLab) is an online semiconductor
characterization laboratory. While WebLab is primarily of interest in microelectronics education, it also represents a testbed for
new pedagogical and technological concepts associated with online laboratories. Our latest release, WebLab 6.0, is constructed
around the newly developed iLab Shared Architecture. This is a new three-tier framework designed to expedite the development
and simplify the management of online laboratories. The iLab Shared Architecture introduces a piece of middleware (termed the
“Service Broker”) between the Client application and Lab Server. The Service Broker uses Web Services to provide a generic set of
functionality which is common to all labs. At the same time, it serves as a pass through between the Client and Lab Server for lab-
specific information such as experiment specifications and data. WebLab 6.0 is the first lab to be deployed within this new
architecture. The new WebLab 6.0 Client incorporates Java support for digitally signed applets. This allows it to break out of the
Java security “sandbox” and interact more directly with the student’s computer. In addition, the use of the open source package
kSOAP enables the Client to communicate via Web Services. The WebLab 6.0 Lab Server has been rebuilt as a data-driven web
application that communicates with the Service Broker via Web Services. The new WebLab 6.0 Lab Server also includes a
persistence layer that stores system information along with an experiment execution queue as well as an Experiment Execution
Engine that governs the execution of queued experiments on the lab hardware. WebLab 6.0 was successfully tested during the
Spring 2004 semester in an undergraduate course on microelectronics at MIT involving over 100 students. During the Fall of
2004, several undergraduate and graduate courses at MIT as well as at other institutions made use of WebLab 6.0 for lab
assignments. Additionally, the WebLab 6.0 code was released in October of 2004 as an exemplar since it was the first online
laboratory implemented on top of the iLab Shared Architecture.

Key Words⎯ iLab, microelectronics, online laboratory, WebLab, web services

INTRODUCTION

The MIT Microelectronics WebLab Project has, since 1998,
worked to provide an online device characterization experience
for microelectronics students. Traditionally, microelectronics
courses lacked a laboratory component. This is largely due to
the various costs and complicated logistics involved in
deploying such a lab for classes with a substantial number of
students. Ideally, such a lab should use state-of-the-art
industrial characterization equipment. Unfortunately,
equipment of this nature is rather expensive, especially when
multiple test stations are to be set up.

In terms of logistics, adequate space must be used to
house the lab. This space needs to be easily accessible and
large enough for students to use the equipment effectively.
Lab staff who are properly trained to use the equipment safely
must be hired. The physical security of the lab and its
equipment must also be insured. The cost and complexity of
these logistics has meant that many microelectronics students
have often lacked a device characterization laboratory
experience.

The Microelectronics WebLab, or WebLab for short, was

developed to remedy this situation. At its essence, WebLab is
a tool which allows students to perform current voltage
measurements on microelectronic devices from anywhere via
the Web [1], [2]. An Agilent model 4155B Semiconductor
Parameter Analyzer is used to perform the device
characterization measurements. This instrument is connected
to eight devices-under-test, or DUT’s, via an Agilent E5250A
Low Leakage Switching Mainframe. Additionally, an Agilent
34970A Data Logging unit is used to measure and report the
ambient temperature of the lab. This equipment is controlled
by a Windows 2000 server which hosts the lab online. A Java
based Client interface is used by students to control the
hardware remotely. Thus, a single hardware setup can be made
available to students across the world for a small marginal cost.

Until recently, WebLab was constructed according to a

rather monolithic design. That is, all components of the lab,
from user authentication modules to lab instrument drivers
were built specifically for the Microelectronics WebLab. In
addition to this, there were no clear organizational distinctions

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

between functionally different pieces of code. Over time, new
functionality was added in an ad-hoc manner more befitting of
a prototype than a finished product. As such, code modules,
both within the Lab Server application and the Client interface,
became increasingly interdependent and fragile. As a result, in
2000 when the iLab Project was launched at MIT to develop a
variety of online laboratories in several engineering disciplines,
only a small portion of WebLab’s code could be recycled [3]-
[6].

To address this deficiency of these first-generation

laboratories, the iLab Project at MIT targeted in 2002 the
development of a generic, or shared, architecture which would
define a basic communication paradigm for online laboratories.
In addition, the project aimed to provide turnkey software
modules capturing the most generic subset of lab
administrative functionality (i.e. user authentication and data
storage). The goal of this effort was to decrease the work
required to deploy an online lab while not imposing undue
constraints on its operation and capabilities [6], [7].

The manifestation of this effort is the new iLab Shared

Architecture. Figure 1 depicts the topology of a lab deployed
within this architecture. At the center of this topology is the
iLab Service Broker, which is a server that contains the
functionality identified as being generic to most online labs.
As of this writing, the Service Broker supports labs which are
“batched” [6]. That is, labs whose experiments can be
completely defined prior to execution and run in an unattended
fashion. The Microelectronics WebLab is an example of a
batched-type experiment.

The Microelectronics WebLab was selected first for

deployment in the iLab Shared Architecture because of its
relative maturity. There were also many lessons learned from
several years of successful deployment that could be shared
with the rest of the project. In addition to this, it would
provide an opportunity for WebLab to get a well-deserved
overhaul.

This paper will describe the redesign of the MIT
Microelectronics WebLab for its deployment within the iLab
Shared Architecture as well as provide an outline for the
development of an online lab within the iLab Shared
Architecture. The components of both the Lab Server and
Client interface will be dissected, discussed and justified.
Following that, the deployment of this new version of WebLab,
termed WebLab 6.0, and integration with the generic iLab
components will be discussed. This will include
accommodations that had to be made in the integration process
as well as initial real-world performance metrics. Finally, an
overall evaluation of WebLab 6.0, with respect to previous
versions, will be presented along with future directions for the
Microelectronics WebLab.

REBUILDING THE LAB

Two major goals were identified for the redesign of the
Microelectronics WebLab. First, the interdependence of
internal modules as well as the overall fragility of previous
versions had to be addressed. In both the Client and server
components of the system, new functionality and updates were
often made in an ad-hoc manner. Additions would be
retrofitted to previous versions with minimal low-level
integration. Often changes would be made to existing code
only in cases where it was required to make a new feature
work. This led to a system that was monolithic and rather
difficult to maintain.

Deciding to deploy WebLab 6.0 within the iLab Shared

Architecture was a starting point for achieving this goal. The
fact that many required functions that are generic to all labs
were provided by this architecture out-of-the-box meant that
there were fewer actual code modules which had to be written
by the lab developer. Beyond this, our approach had two
primary requirements. Both the Lab Server and Client had to
be designed according to complete, lab-specific functional
specifications with clear, well-defined interfaces between
individual internal components. Additionally, a more

FIGURE 1
TOPOLOGY OF THE MICROELECTRONICS WEBLAB AS IMPLEMENTED WITHING THE ILAB SHARED ARCHITECTURE. THIS TOPOLOGY IS COMMON TO ALL BATCHED-
TYPE LABORATORIES.

Public Internet
(SOAP/XML)

PowerEdge
460 0

Service Broker

PowerEdge
4600

WebLab
Lab Server

4155B

E5250A

34970A

GPIB Bus

Lab Hardware

Public Internet
(SOAP/XML)

WebLab Client

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

disciplined coding practice had to be established so that
specified internal interfaces remain defined through future
revisions.

The second major goal of the redesign effort was to

enhance the educational value and technical performance over
earlier generations of the system. One advantage of the
monolithic design of previous WebLab versions was that
everything was in the control of the lab developer. All parts of
the user experience were defined by those running the lab.
Furthermore, most software interfaces were internal to the
same computer and, thus, would incur little overhead. Both
these and the client-server interface (the only network interface
in previous versions) could be tuned for a specific application.

In contrast, the iLab Shared Architecture is, by design, a

distributed one [6], [7]. Similar to more monolithic designs,
there is a Client interface and a Lab Server. However, in the
shared architecture, a Service Broker exists between the Client
and Lab Server. This Service Broker is the user’s initial
interface to the lab, performs user authentication and data
storage functions and also serves as a launch point for the Lab
Client. Once the Lab Client is launched, all communication
from that client to the Lab Server is routed through the Service
Broker. Communication between the Client and Service
Broker as well as between the Service Broker and Lab Server
are performed using standard Web Services and SOAP.

At first blush, this presents itself as a lot of added

machinery with many more points where non-trivial overhead
can be incurred. Again, the design of the Service Broker
mitigates this to a degree. The Service Broker behaves only as
a communication pass-through to the Lab Server for lab-
specific requests from the Client. Thus, Client requests can be
performed in one conceptual round trip regardless of the nature
of the request. Also, the Web Service interfaces for the Client
and Lab Server are terse, well-defined and platform
independent. This allows for a clean division of labor between
major components as well as flexibility in implementation.
The onus is on the lab developer, then, to choose appropriate
tools for their application and to take advantage of them to
create a Lab Server and Client that perform well.

With the well-defined interfaces at either end of the

Service Broker, there is a clear division of labor in developing
a new lab within the shared architecture. Both the Lab Server
and Client must be constructed according to their own, lab-
specific functional specifications. The Web Services provided
by the Service Broker specify the mechanism by which the
Client and Lab Server communicate. Thus, the Client and Lab
Server must be able to communicate lab-specific information
with each other within the confines of their respective, generic
interfaces with the Service Broker. To this end, there are a set
of XML documents that define the content of the lab-specific
communication between the Client and the Lab Server. This
set includes the following documents whose schemas are lab-
dependent:
• Lab Configuration: The purpose of the Lab

Configuration Document is to give the server a vector for

describing the current status of the lab to the Client. For
the Microelectronics WebLab, this includes information of
the specific microelectronic devices connected to the lab
instrumentation.

• Experiment Specification: In this document, the Client
defines specific execution parameters for a given
experiment execution to be performed by the Lab Server.
In the WebLab case, this includes what device to perform
the measurement on, the individual terminal settings which
will define the measurement as well as what data should
be returned.

• Experiment Results: This document provides a context-
aware way for experiment data for a given execution to be
relayed from the Lab Server to the Client interface.

In summary, the Lab Configuration, Experiment

Specification and Experiment Results documents form the
basis for lab-specific communication between the Client
interface and the Lab Server via the Service Broker. As such,
the initial design of WebLab 6.0 focused around their
definition. The following sections describe the individual
development of the Client interface and the Lab Server.

REDESIGN OF THE WEBLAB CLIENT INTERFACE

In redesigning the WebLab Client interface, the previously
mentioned overarching goals needed to be addressed. While it
was important that the same basic feature set present in the
older Client be included in the new version, it was critical that
module interdependence and other legacy issues not be
propagated. To that end, WebLab 6.0 was rebuilt from scratch.
On the Client side there would be effort given to refining the
look and feel of the user interface components, but the primary
focus would be on building a Client that was educationally
valuable, modular in design, extensible and compliant with the
iLab Shared Architecture.

As with previous versions, the WebLab 6.0 Client
interface is based on Java technology and deployed as an
applet. The primary reason for this is the relative ubiquity of
Java as a client execution environment. Reasonable cross-
platform compatibility in tandem with the fact that a Java
runtime environment is both included with most browsers and
freely available as a standalone plug-in allows WebLab a
maximum reach with little or no additional development. This
has worked well for previous versions of the WebLab Client
[1], [2], [11].

In terms of specific design, the WebLab 6.0 Client is an

assembly of three major components with well-defined
interfaces as described in Figure 2. The topmost layer is the
User Interface component. This includes an experiment result
graphing engine along with an otherwise thin set of
presentation modules which govern only the look and feel of
the interface. As modularity is an important design objective,
the UI layer is constructed as an interchangeable component.
The advantage of this is that the WebLab 6.0 Client could be
constructed, initially, as a graphically based interface as shown
in Figure 3. However, at a later date, interface changes can be

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

made without affecting the underlying Client behavior. This is
accomplished by enforcing the use of a well-defined interface
between the UI layer and the WebLab Client Core component.

The WebLab Client Core component is, essentially, the

functional core of the WebLab 6.0 Client interface. This
component contains all of the functional logic for the Client.
This includes the back-end processing required for
functionality at the UI layer as well as the
construction/processing of the lab-dependent XML documents
mentioned above. In particular, a significant challenge
presented itself in the parsing of the Lab Configuration and
Experiment Result documents. This task is relatively minor
but the common XML parsing tools in the Java Web Services
Developer Pack were far more robust than necessary [8]. More
importantly, the inclusion of this in the Client would result in a
rather prohibitive download size for the user. Fortunately, a
solution was found in the SAX toolkit, which is supported in
the standard Java Runtime Environment. This toolkit, while
still providing more functionality than is strictly necessary, is
much smaller and cleaner than its counterpart in the Web
Services developer pack.

The third and final component of the WebLab 6.0 Client
is the Server Interface. As its name suggests, this component
governs the Client’s communication with the iLab Service
Broker. This layer communicates with the Service Broker via

Web Services according to the Client to Service Broker API as
defined by the iLab Shared Architecture [6], [7]. Once again,
the requirement that this interface communicate via Web
Services led to the challenge of finding a replacement for the
unsuitably large Java Web Service Developer Pack. In this
case, a replacement SOAP client was found in the kSOAP
package [9]. This package, originally developed for use with
the Java 2 Mobile Edition, provided the needed functionality
while, again, keeping the overall download size reasonable.

Similar to the UI layer, the Server Interface is designed to

be interchangeable. There is a well-defined interface between
the WebLab Client Core component and the communication
layer in order to enforce modularity. Thus, the Server
Communication component present in the WebLab 6.0 Client
can be cleanly replaced with another if support for a different
communication protocol were necessary. This also means that
the Web Service compliant component now used in the Client
interface can be reused with minimal modifications in any Java
based lab client constructed within the iLab Shared
Architecture.

In a departure from previous WebLab Client designs,

experiment validation logic has been relocated to the Lab
Server. There are two main reasons for this. The first is that,
with this change, the overall download size of the Client is

FIGURE 2
WEBLAB CLIENT INTERFACE COMPONENT DIAGRAM.

Server Interface

WebLab Client Core
Module

User Interface Layer

Public Internet
(SOAP/XML)
to Service Broker

WebLab Client

Graphing Engine

FIGURE 3
A SCREENSHOT OF THE WEBLAB 6.0 CLIENT INTERFACE.

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

reduced. This is an important consideration as the graphical
nature of the applet as well as its need for additional
components to support new functionality leads to a code base
that threatens to be a formidable download. The second reason
for removing validation from the Client is that its placement on
the Lab Server centralizes the validation process. Where the
Client may be distributed among Service Brokers in diverse
locations and only loosely controlled, the Lab Server is almost
always located at the lab itself. Placing validation on the Lab
Server provides both an assurance that validation code will run
on all submitted jobs as well as easier maintenance, with
changes applying to all experiments instantaneously.

As a finished product, the WebLab 6.0 Client, as seen in

Figure 3, requires that version 1.4.2 of the Java Runtime
Environment be installed on the student’s local machine. This
is freely available on the Internet in the form of a browser
plug-in [10]. The graphical nature of the Client is one reason
for this. The use of a circuit schematic-based interface has
proved to have significant educational value [11] but requires a
code base more advanced than that currently included with
most web browsers. Additionally, having to go to some lab-
specific location to get the base circuit schematic images
coupled with the requirement that all functional
communication from the Client go to the general Service
Broker presents what is traditionally a security violation in
Java environments. That is, the requirement that an applet can
only communicate with the server that launched it. The 1.4.2
version of the JRE supports an adjustment to this rule where a
digitally signed applet can request added privilege from the
user [12]. This feature is used to enable the Client’s
communication with multiple servers as well as its ability to
save experimental results directly to the student’s local

machine.

Overall, the WebLab 6.0 Client is a marked improvement

over previous versions. As the Client is based on the same
underlying Java technology as previous versions, it maintains
its usability across multiple computing platforms. The user
interface is also similar to that of WebLab 5.0, thus
maintaining its intuitive look and feel. However, the WebLab
6.0 Client’s elegant, modular design makes it easier to
maintain. The enhanced functionality of the new Client also
comes in a smaller size than previous versions. Where the
WebLab 5.0 Client was a 264 KB package, cleaner design and
the relocation of validation code to the Lab Server reduce the
6.0 Client to 255 KB. This is no small feat considering the
additional packages required for XML parsing and SOAP
communication in the WebLab 6.0 Client.

REDESIGN OF THE WEBLAB LAB SERVER

In previous versions of WebLab, the Lab Server, while
functionally complete, was monolithic and, ultimately, fragile.
As was the case with the Client, the WebLab 6.0 Lab Server
was effectively built from scratch in order to ensure that legacy
issues and previous interdependencies did not creep into the
new design. In addition to the overall design goals mentioned
earlier, a specific goal of the Lab Server redesign was to
increase its performance scalability and reliability with respect
to previous versions.

To this end, the Lab Server was designed as a data-driven
web application whose primary purpose is to receive, process
and execute experiment specifications and return their results.
As shown in Figure 4, this application is comprised of three

FIGURE 4
WEBLAB 6.0 LAB SERVER COMPONENT DIAGRAM.

4155B

E5250A

34970A

iLab Web Services API (ASMX)

Lab Server for the Microelectronics WebLab

Public Internet
(HTTP)

to Lab Administrator

Public Internet
(SOAP/XML)
to Service Broker

Experiment
Execution

Engine

GPIB Bus

Queue Manager

Resource/Permission
Manager

Records Manager

Lab Database
In-Process Data

Manager Interfaces

Experiment
Validation

Lab
Administration

Web Site
(ASPX)

Modules Internal to IIS Independent Modules

Web Server Layer
Data Persistence

Layer
Experiment

Execution Engine

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

major components. The core of the Lab Server is the Data
Persistence Layer which serves as the information hub of the
system. This layer is built with a Microsoft SQL Server 2000
database which fulfills three roles. The first is to store the
operational data of the Lab Server. This includes device
models and permission information which is used to define the
current configuration of the lab with respect to the agent trying
to use it.

The second role of the Data Persistence Layer is to

maintain a queue of any experiment specifications awaiting
execution as well as a record of past executions. A single
database table is used for this purpose. The status of a given
experiment specification or job (queued, in progress or
complete) is stored as a state variable in the job’s record. The
job queue, then, is comprised of all records that are marked as
“queued,” which can be ordered by a Lab Server assigned
priority and the time of submission. Alternately, the set of
records marked as “complete” comprise the Lab Server’s
execution log. A persistent data store was used for the job
execution queue, as opposed to using a construct within the
memory of some Lab Server process, so that jobs would not be
lost once submitted regardless of what happened to the other
processes involved.

Finally, the Data Persistence Layer also defines the low-

level mechanisms for the access of the data stored within it.
This is achieved by the creation of a set of Data Manager
Methods which provide an interface for common operations,
such as the submission of a job or the creation of a device
model, on the Data Persistence Layer. These Data Manager
Methods are implemented as a series of stored procedures and
user defined functions within the SQL database. The purpose
of this is twofold. First, this ensures that informational
requirements and dependencies of the data model can be
accounted for within the database and contained within the
interface defined by the Data Manager Methods. Second, these
common yet, sometimes, complex operations can be performed
within the database where there is machinery to make such
operations more efficient.

On one side of the Data Persistence component is the

Web Server Layer. This layer is governed by a Microsoft
Internet Information Services 5.0 web server process which
joins the Data Persistence component to the outside world.
The interface defined by the Data Manager Methods discussed
earlier are implemented by a series of VisualBasic.NET
libraries for use by this layer. In addition to this, a similar code
library provides access to the Experiment Validation Engine.
The validation engine is the software component which parses
a given Experiment Specification document, checks it against
known hardware error conditions as well as server imposed
access controls. Every job submitted to the Lab Server is
analyzed by the validation engine before being entered into the
execution queue. While this serves the functional requirements
of checking the validity of jobs before execution, this also
improves server performance as well as the user’s experience.
Most errant jobs are caught before further machine cycles or
hardware resources are spent on them and, when they are

caught, an error message that is more context-aware than that
provided by the lab instrumentation can be generated.

At the exterior of the Web Server Layer are the web

interfaces themselves. The Web Service Interface implements
the Lab Server portion of the Service Broker to Lab Server
API as defined by the iLab Shared Architecture [6], [7]. This
interface is defined as a VisualBasic.NET Web Service class
which delegates work to the in-process Data Manager and
Validation Engine libraries. The security of this interface is
guaranteed by two mechanisms. First, every call from the
Service Broker to the Lab Server contains a previously agreed
upon Server ID value and Passkey in the header of the SOAP
envelope. These credentials are defined out of band when a
Lab Server and Service Broker register with each other. At
each call on the Lab Server Web Service Interface, the caller’s
level of access to the interface is determined based on these
credentials. In order to secure these credentials during
transport, a Secure Sockets Layer connection is required for
communication with the Lab Server Web Service Interface.

Additionally, an Administrative Web Interface is defined

within the Web Server Layer. This gives administrators of the
Microelectronics WebLab a suite of online lab management
tools. These tools are comprised of a series of ASP.NET pages
which interface to the in-process Data Manager libraries as
well as Data Persistence Layer when direct access is required
for reading large datasets. This administrative site, while
available on the public Internet, is only usable by lab
administrators who can authenticate themselves to the system.

On the other side of the Data Persistence Layer is the

Experiment Execution Engine. This third component of the
Microelectronics WebLab Lab Server governs the execution of
individual experiment specifications. This component is a
VisualBasic.NET executable which runs in a process
completely separate from the other components of the Lab
Server. This process is launched when the host server boots
and remains active while the machine is on. When idling, the
execution engine checks for jobs in the experiment queue in
the Data Persistence Layer via its Data Manager interface. If a
job is found, it is loaded into the execution engine where it is
parsed and prepared for execution. The top level of the
execution engine configures the lab instrumentation with the
specified parameters by calling methods defined by a set of
drivers which have been written specifically to control the
interface to the lab instrumentation. These drivers are the only
legacy objects from previous versions of WebLab. They are
Microsoft COM libraries which communicate with the lab
instrumentation via an API provided by the manufacturer of
the hardware interface between the computer and the GPIB bus
connecting the lab equipment.

Once the job has been executed by the lab instrumentation

and the results returned, the Experiment Execution Engine
writes them to an XML Experiment Results document. This
document, along with any hardware generated error messages
or comments, is written to the appropriate experiment record in
the Data Persistence Layer. Finally, the execution engine

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

attempts to prompt the Service Broker, by way of the Web
Server Layer, to retrieve the experiment results as per the Lab
Server to Service Broker API [6], [7].

This overall architecture achieves the additional goals of
increased scalability and reliability, in no small measure,
because of the strong separation of components. Primarily, the
inclusion of a proper execution queue within the Data
Persistence Layer means that job execution is asynchronous
with job submission. This is a departure from previous
WebLab Lab Server designs. This frees up operational
bandwidth for both the web server process, which no longer
has to wait for job execution to complete before moving on to
the next web request, and the execution engine, which no
longer has to share space with the web server. Furthermore,
the separation of the Web Server and Experiment Execution
Engine components means that if either of these components
fail, the other can continue to operate. Thus, by enforcing
modularity in design, overall reliability and performance
benefit.

DEPLOYING WEBLAB 6.0

In January of 2004, the WebLab 6.0 Lab Server and Client
were integrated with the iLab Service Broker in preparation for
use in MIT’s undergraduate level introductory microelectronics

course that Spring term. This course typically has an
enrolment of around 100 students and uses WebLab for two or
three device characterization projects. Figure 5 details the
hourly usage of WebLab 6.0 during a two-week assignment
that term. In particular, the heavy usage towards the end of the
assignment is typical and is where we would expect to
experience problems. However, the system, as a whole,
experienced no serious failures during this time while usage
was at near-record levels. As of this writing, WebLab 6.0 is
being used in MIT’s graduate and undergraduate courses as
well as courses offered in universities in Taiwan and Italy.

Additionally, in October of 2004 the WebLab 6.0 source
code was released as part of the iLab Shared Architecture
Dissemination Effort [13]. The goal of this effort is to prompt
groups outside of MIT to develop online laboratories using the
iLab Shared Architecture. As the Microelectronics WebLab
was the first lab to be deployed using this architecture, it has
been released as an exemplar along with the source code of the
iLab Service Broker. This release is intended primarily for the
purpose of commentary.

CONCLUSIONS & FUTURE WORK

In conclusion, a major architectural revision of the MIT
Microelectronics WebLab has taken place in order to deploy

FIGURE 5
WEBLAB 6.0 JOB EXECUTIONS PER HOUR DURING A TWO-WEEK MIT COURSE ASSIGNMENT IN THE SPRING OF 2004.

WebLab 6.0 Job Executions Per Hour (4/22/04 - 5/5/04)

0

20

40

60

80

100

120

140

04
/22

/20
04

04
/23

/20
04

04
/24

/20
04

04
/25

/20
04

04
/26

/20
04

04
/27

/20
04

04
/28

/20
04

04
/29

/20
04

04
/30

/20
04

05
/01

/20
04

05
/02

/20
04

05
/03

/20
04

05
/04

/20
04

05
/05

/20
04

Jo
b

Ex
ec

ut
io

ns

Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

WebLab within the new iLab Shared Architecture.
Additionally, as WebLab 6.0 is the first lab deployed under the
iLab Shared Architecture, it represents a complete, functional
prototype of this new software framework for the development
of new online labs. WebLab 6.0 marks a drastic departure, in
terms of design, from previous versions. These changes,
though, have resulted in a system that is both more robust and
more scalable while maintaining its educational value. To that
end, WebLab 6.0 has been and is currently deployed in courses
both at MIT and abroad.

Looking forward, the WebLab 6.0 Client is in the process
of being fitted with a tabular interface and being made
compatible with older Java environments such as those
included with most browsers for use in low-bandwidth areas.
As a result of this development, further revisions of the
Client’s SOAP and XML modules have been made and will be
applied to the current version. In the short term, both the
WebLab 6.0 Client and Lab Server code will be released as
exemplars as part of the iLab Shared Architecture
Dissemination Effort. As a follow-up to the “for comment”
release in October of 2004, this release will feature an install
package for the iLab Service Broker as well as updated
versions of the WebLab 6.0 source code.

ACKNOWLEDGEMENTS

This project is funded by Microsoft through iCampus, the
MIT-Microsoft Alliance. The instruments used in WebLab
were donated by Agilent Technologies.

REFERENCES

[1] del Alamo, J. A., L. Brooks, C. McClean, J. Hardison, G. Mishuris, et al.,

“MIT Microelectronics WebLab”, chapter in T. A. Fjeldy and M. Shur,
eds., Lab on the Web: Running Real Electronics Experiments via the
Internet, John Wiley & Sons - IEEE, 2003. pp. 49-87.

[2] del Alamo, J. A., L. Brooks, C. McLean, J. Hardison, G. Mishuris, et al.,
“The MIT Microelectronics WebLab: a Web-Enabled Remote Laboratory
for Microelectronic Device Characterization”, World Congress on
Networked Learning in a Global Environment, Berlin (Germany), 2002.

[3] Amaratunga, K. and R. Sudarshan, “A Virtual Laboratory for Real-Time
Monitoring of Civil Engineering Infrastructure”, ICEE, Manchester (UK),
2002.

[4] Colton, C. K., “iLab Heat Exchanger”, http://heatex.mit.edu/.

[5] “Shake Table WebLab”, http://flagpole.mit.edu:8000/shaketable/.

[6] Harward, V. J., J. A. del Alamo, V. S. Choudhary, K. deLong, J. L.
Hardison, et al., “iLab: A Scalable Architecture for Sharing Online
Experiments”, ICEE, Gainesville, Florida (USA), 2004.

[7] Yehia, K., “The iLab Service Broker: a Software Infrastructure Providing
Common Services in Support of Internet Accessible Laboratories”, MIT
Master of Science thesis, May, 2004.

[8] “Java Web Services Developer Pack”,
http://java.sun.com/webservices/jwsdp/index.jsp.

[9] http://ksoap.objectweb.org/.

[10] http://java.sun.com/j2se/1.4.2/download.html.

[11] del Alamo, J. A., V. Chang, J. Hardison, D. Zych, L. Hui, “An Online
Microelectronics Device Characterization Laboratory with a Circuit-like
User Interface”, ICEE, Valencia (Spain), 2003.

[12] “Java Plug-in 1.4.2 Developer Guide”,
http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/content
s.html, Ch. 16-19.

[13] “MIT iCampus: iLabs Architecture”,
http://icampus.mit.edu/ilabs/architecture/content/?ilabsdownload.

