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Abstract-We have exploited both the attractive transport 
properties and the etch selectivity of InP in a novel InAIAs/n+- 
InP metal-insulator-doped-channel heterostructure FET (MID- 
FET). In several other material systems, the MIDFET has been 
shown to be well-suited to high-power telecommunications ap- 
plications. Our device employs InP both as the channel layer as 
well as an etch-stop layer in a selective-etch recessed-gate pro- 
cess. L ,  = 1.8-pm devices achieve g, and values of 224 
mS/mm and 408 mA/mm, respectively, the highest reported 
values for any InP channel HFET with L ,  2 0.8 pm, including 
MODFET's. These figures combine with a breakdown voltage 
of 10 V, and peak values of fT and fmax of 10.5 and 28 GHz, 
respectively. Our selective-etch recessed-gate process contributes 
to excellent device performance while maintaining a tight 60-mV 
threshold voltage distribution (13 mV between adjacent devices). 

HERE is a growing interest in the use of InP as the T active channel layer in heterostructure field-effect tran- 
sistors (HFET's) designed for high-power telecommunica- 
tions applications because of its exceptional breakdown field 
and saturation velocity [ 11-[3]. Recently, the metal-insula- 
tor-doped-channel HFET (MIDFET) has shown particular 
promise for such applications in several material systems 
including AlGaAs /n+-GaAs  [4], pseudomorphic 
AlGaAs/n+-InGaAs [5] ,  [ 6 ] ,  and InAlAs/n+-InGaAs [7], 
[8]. Featuring an undoped wide-bandgap pseudoinsulator 
layer with a thin, heavily doped channel, the MIDFET 
achieves high drain-current ( I D )  linearity over a broad 
gate-source voltage ( V,,) swing, extremely broad plateaus 
in the V,, dependence of fr and f,,,,,, large breakdown 
voltage, and low-frequency dispersion in transconductance 
(8,) [6] .  These merits combine to make the MIDFET ideally 
suited to benefit from an InP channel. In addition, the 
availability of highly selective wet etchants for InGaAs and 
InAlAs against InP opens a variety of new fabrication possi- 
bilities employing InP as an etch stop layer. In this study, we 
present a novel InAlAs/n+-InP MIDFET, featuring both a 
thin n+-InP channel layer as well as an InP etch-stop layer in 
a selective-etch recessed-gate process. Our design results in 
excellent performance without sacrificing tight threshold volt- 
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Fig. 1. Schematic cross section of the InAIAs/n+-InP MIDFET. 

age (V, )  uniformity, an important concern in a manufactur- 
ing environment. 

Our heterostructure, shown in Fig. 1, consists of a 500-8, 
n+-In,,,,Ga,,,7As cap ( N ,  = 1 x lOI9 ~ m - ~ ) ,  a 50-8, InP 
etch-stop layer, a 250-8, Al,,,, As pseudoinsulator, a 
100-8, n+-InP channel (No = 5 x 10" ~ m - ~ ) ,  a 100-8, InP 
subchannel, and a IOOO-8, Al,,,,As buffer/electron 
confinement layer. The device layers are grown on a semi-in- 
sulating (100) InP substrate at 76 torr in a low-pressure 
horizontal MOCVD reactor using trimethyl organometallic 
compounds [9]. 

We begin fabrication with a mesa wet etch, followed by 
Ni/Au/Ge ohmic contact deposition, patterning, and RTA 
annealing at 420°C for IO s in an AG Associates Heatpulse 
410. After gate photolithography, the n+-InGaAs cap is 
selectively etched down to the InP etch-stop layer with 
1:10:220 H,SO,:H,O,:H,O etchant just prior to the deposi- 
tion and lift-off of Ti/Pt/Au gates. Precise timing of the etch 
or iterative monitoring of ID is obviated by the better than 
300: 1 selectivity of this etchant for InGaAs on InP, which we 
have verified in etch tests. Finally, we conclude fabrication 
with Ti/Pt/Au pad formation. For a reference, we also 
fabricate devices from a sample in which the cap layer is 
completely etched off prior to the mesa etch. 

Fig. 2 shows g, and ID versus V,, for a L, = 1.8-pm 
and Wg = 200-pm MIDFET at V,, = 4 V. We obtain a 
sharp pinchoff at V ,  = - 1.8 V. For V,, 2 - 1.8 V, g, 
rises with V,, in an approximately linear dependence and 
peaks due to the onset of significant gate leakage at 224 
mS/mm, leading to a maximum ID of 408 mA/mm. These 
are the highest values reported for InP-channel HFET's of 
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Fig. 2. g, and ID versus V,, for a 1.8-pm x 200-pm MIDFET (VDs = Fig. 4. fT and f,,, versus V,, for a 1.8-pm X 200-pm MIDFET 
4 V). (V,,  = 5 V). 
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Fig. 3 .  ID versus V,, for a 1.8-pm x 200-pm MIDFET, showing 
drain - source breakdown. 

L, 2 0.8 pm, including MODFET's [2], [3]. Fig. 3 shows 
Z, versus V,, for the same device. Drain conductance is 6 
mS/mm at peak g,, which yields a high voltage gain of 40. 
In addition, we observe a drain-source breakdown voltage 
BV,, of about 10 V, defined at Z, = 40 mA/mm (10% of 
maximum ID). The majority of 1, beyond breakdown flows 
through the gate, indicating that the intrinsic gate structure is 
responsible for breakdown rather than the channel. 

Like g,, fT and f,,, rise linearly with VGs, as shown in 
Fig. 4, peaking at 10.5 and 28 GHz, respectively. From the 
value of fT, we can extract an average channel electron 
velocity U, of 1.2 x lo7 cm/s. The linear rise of both g, 
and f, with V,, clearly indicates that our devices remain in 
the mobility-limited electron transport regime over their en- 
tire operating range ( p n  = 1600 cm2/V * s, as determined 
from the slope of f, versus VGs near threshold). This is in 
contrast with the broad g, and f, plateaus due to velocity 
saturation usat that are visible in MIDFET's of similar L ,  
fabricated in other material systems [lo], [ll]. The absence 
of usat in our n+-InP channel devices stems from the high 
electric field of about 10 kV/cm needed to approach usat in 
InP [12], which is larger than the average field of about 7 
kV/cm achieved in our devices at peak g,. These factors 

emphasize the need for submicrometer L, scaling to fully 
realize the benefits of the InAlAs/n+-InP MIDFET design. 
As long as peak f, remains mobility-limited, however, we 
expect f, to scale up as 1/Li, to an estimated 30 GHz at 
L, = 1 pm, comparable with L, = 1-pm InP-channel 
MODFET's [13]. 

From a manufacturing point of view, V,  uniformity is of 
great importance. Conventional recessed-gate processes that 
employ a timed etch or ID monitoring have difficulty in 
realizing high V ,  uniformity because they are unable to 
control the depth of the cap etch with sufficient precision. By 
using an InP etch stop layer, however, our devices achieve a 
tight 60-mV standard deviation in V,  about an average V ,  of 
- 1.77 V for 30 devices (with V,  measured to a resolution of 
10 meV by extrapolating Z;'* versus V,, to the V,, axis). 
Most of the observed V ,  variation results from a monotonic 
shift in V ,  from -1.67 to -1.91 V in moving across the 
wafer due to growth-related channel doping variation and not 
from our cap etch. Indeed, the V,  difference between adja- 
cent devices has a standard deviation of only 13 mV over 15 
pairs of devices, which is at the limit of our V,  resolution. 

The excellent values of g, and Z, achieved in our devices 
is due in large part to a reduction in parasitic R ,  by our cap 
layer. Comparison with the uncapped reference device shows 
that, for small currents (below 100 mA/mm), the cap re- 
duces the extrinsic sheet resistance R, ,  from about 1400 to 
about 600 Q /U, as measured using the floating-gate TLM 
technique [14]. This reduction is due to the well-known 
screening of surface Fermi level pinning [15]. At larger 
currents (above 100 mA/mm), however, R,,  drops dramati- 
cally to 50 Q / O ,  the value of R,, for the cap layer itself. 
This suggests that the cap acts to further reduce extrinsic R ,  
by conducting ID above 100 mA/mm in parallel with the 
extrinsic channel. At these high currents, the potential drop 
in the extrinsic channel is sufficient to turn on the cap/pseu- 
doinsulator/extrinsic channel SIS junction, which has a low 
effective barrier height (less than 0.1 eV) due to the high 
doping level in the cap layer. The point at which the SIS 
junction turns on and parallel conduction through the cap 
begins is clearly marked by a kink in g, versus V,, at 
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I, = 100 mA/mm. By 400 mA/mm, R,  is reduced to about 
1.5 s2 mm. The resulting low R,, of the extrinsic source 
makes our devices very insensitive to the gate-source gap 
( L,,). In particular, devices fabricated with L,, ranging 
from 2 pm (the standard gap length) through 10 pm display a 
drop in peak g, of less than 10% in moving from the 
smallest to largest L,,. 

In summary, we have fabricated high-performance In- 
AlAs/n+-InP MIDFET’s using InP both as the channel layer 
and as a novel etch-stop layer in a selective-etch recessed-gate 
process. Our devices achieve outstanding values of peak g, 
and I,. We find that our selectively recessed cap signifi- 
cantly reduces R,  by participating in current conduction in 
parallel with the extrinsic channel, contributing to perfor- 
mance without sacrificing tight uniformity in VT. 
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