42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

Predictive System Shutdown and Othér
~Architectural Techniques for Energy
Efficient Programmable Computation

Mani B. Srivastava, Member, IEEE, Anantha P. Chandrakasan,
and Robert W. Brodersen, Fellow, IEEE

Abstract— With the popularity of portable devices such as
personal digital assistants and personal communicators, as well
as with increasing awareness of the economic and environmen-
tal costs of power consumption by desktop computers, energy
efficiency has emerged as an important issue in the design of
electronic systems. While power efficient ASIC’s with dedicated
architectures have addressed the energy efficiency issue for niche
applications such as DSP, much of the computation continues to
be implemented as software running on programimable processors
such as microprocessors, microcontrollers, and programmable
DSP’s. Not only is this true for general purpese computation
on personal computers and workstations, but also for portable
devices, application-specific systems etc. In fact, firmware and
embedded software executing on RISC and DSP processor cores
that are embedded in ASIC’s has emerged as a leading implemen-
tation methodology for speech coding, modem functionality, video
compression, communication protocol processing etc. This paper
describes architectural techniques for energy efficient implemen-
tation of programmable computation, particularly focussing on
the computation needed in portable devices where event-driven
user interfaces, communication protocols, and signal processing
play a dominant role. Two key approaches described here are
predictive system shutdown and extended voltage scaling. Results
indicate that a large reduction in power consumption can be
achieved over current day solutions with little or no loss in system
performance.

I. INTRODUCTION
COMPUTING TRENDS DRIVING ENERGY
EFFICIENCY IN PROGRAMMABLE COMPUTATION

HROUGHOUT the history of general-purpose computers

the emphasis, with few exceptions, has been on the
development of faster computers. Recent advances in micro-
processor design has resulted in clock rates approaching 300
MHz and caused power dissipation levels to rise above 30 W.
However, two recent trends have resulted in the emergence of
power consumption, or energy efficiency, as an important per-
formance metric in general-purpose programmable computing
systems. The first of these trends is the emphasis on saving
energy in desktop computation, the reasons for which are

Manuscript received May 23, 1994; revised December 14, 1994 and April
4, 1995.

M. B. Srivastava is with AT&T Bell Laboratories, Murray Hill, NJ 07974
USA.

A. P. Chandrakasan is with the Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

R. W. Brodersen is with the EECS Department, University of California at
Berkeley, Berkeley, CA 94720 USA.

Publisher Item Identifier S 1063-8210(96)01867-7.

both economic/environmental and technical. Studies [1] have -
shown that personal computers in USA waste $2 billion of
electricity, indirectly produce as much CO, as 5 million cars,
and account for 5% of commercial electricity consumption
(10% by the year 2000). These compelling economic and
environmental reasons alone have resulted in the concept of
“green computers.” The technical reasons for emphasizing low
power in desk top computers have primarily to do with the
problem of heat dissipation which gets increasingly worse
due to higher speeds and shrinking packages. Further, desk
top computers of the future will no more be just plain data
processing machines of the past—useful, but energy-hungry,
features like DSP, multimedia, and communications are be-
coming integral parts of desktop computers, thus exacerbating
the power consumption and heat dissipation problems.

The second trend in computing that has helped make energy
efficiency an important problem is the increase in demand for
portable computing and communication devices. Energy effi-
ciency is a major design constraint in these portable devices,
and not just an economic or technical factor. In particular,
the need to extend battery life to a useful length of time
for a given mass makes energy efficiency an important de-
sign constraint. It is this second trend that has been the
motivation behind our work. Fig. 1 shows the architecture
of one such portable computing/communication device—the
Infopad wireless multimedia terminal from Berkeley [2]. All
the application related computing is done on servers on a
wired backbone network; the terminal itself is responsible
only for the computing that is necessary for user I/O (speech,
video, graphics, pen) and communications functionality. Using
various recently developed techniques for low-power ASIC’s
[3] researchers at Berkeley have designed a set of low-power
ASIC’s [4] that implements parts of the terminal functionality,
such as packet routing, speech and pén J/0O, video. frame-
buffer processing etc. Another example of a wireless terminal
is Xerox PARC’s ‘Tab terminal [5] which too depends on
network resources for most of its computing and storage needs.
However, even with the minimalist approach to computation
adopted by these wireless terminals, there are parts of function-
ality that are usually best implemented using general-purpose
microprocessors, programmable DSP’s, and programmable
processor cores embedded in ASIC’s. Examples include media
access control and data link layer protocol processing for
wireless RF communication between the portable terminal’

1063-8210/96$05.00 @ 1996 IEEE



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 43

W\
i { b

specker micro pen
phone

Fig. 1. Energy efficient programmable computation needed to extend battery
life in portable computation.

and a basestation, the DSP processing for speech coding, and
processing for parts of the graphics display server (X server,
for example) that may reside on the terminal. The need for the
use of software programmable components is even greater in
other portable devices—such as independent laptop computers
and PDA type devices—that do not adopt as extreme a
partitioning of computation between the network servers and
the portable device as is adopted in portable devices following
a terminal-like architecture [6]. Implementation using software
may be needed because 1) the algorithmic and logical (con-
trol) complexity of the application may preclude dedicated
hardware and make software the only practical choice, or
2) the application may not operate continuously or different
functionality may be needed at different times so that a time-
multiplexed software implementation is more cost effective.

II. ARCHITECTURAL APPROACHES TO ENERGY EFFICIENCY

Our work is primarily focussed on architectural techniques
to improve energy efficiency—or, minimizing the average
power consumption—for the parts of a portable wireless ter-
minal like Berkeley’s Infopad or Xerox PARC’s Tab that need
to be implemented using software programmable components
such as microprocessors, DSP’s, and embedded processor
cores. The goal is to maximize the run time for a given battery
weight. The need for architectural techniques to this problem
is justified by the observation that battery and semiconductor
technology alone are not going to solve this problem. For
example, Fig. 2 shows the trend in battery technology over the
past 30 years—the slow improvement in battery technology is
evident from the approximately factor of two improvement
over three decades in the energy density (Watt-hours/Ib) of
nickel-cadmium cells to their present value of around 20
Wh/lb. The only likely new technology that will take over from
NiCd over the next few years is Nickel-Metal Hydride, since it
alone provides a combination of enhanced performance (30-35
WHh/lb) and environmental safety [7]. However, even for this
new technology the projections are of at best another 30—40%
improvement in energy density over the next five years.

Since technology alone will not provide the complete an-
swer, one has to focus on other techniques for implementing
the system such that the power consumption is reduced.
So far the main approaches for lower power consumption
and increased battery life have been restricted to using a
limited amount of voltage scaling in the form of using 3.3
V parts instead of 5 V parts (often coupled with lower clock

g
]
1
-4

Ni-Metal Hydride

W
(=]

N
(=]

Nickei-Cadmium

Nominal Capacity (Watt-hours / Ib)
[y
(=]

' L

65 70 75 80 8 90 95

0

Fig. 2. Trends in battery technology.

speed), and straightforward shutdown of the system power
supply and/or clock—various notebook and laptop computers
on the market illustrate these techniques. However, much
higher reductions in power consumption are possible by using
more sophisticated architectural and implementation strategies.
For example, a proper addressing of the problems of when

_to shutdown, and how to scale the voltages can result in

substantial improvement in energy efficiency with no or little
loss in performance.

In CMOS technology there are three sources of power
consumption: switching current (dynamic power), short-circuit
current, and leakage currents. The switching component not
only dominates in most designs, but is also the only one
which cannot be made negligible even when proper circuit
design techniques are used—architectural techniques therefore
become important in reducing the switching component of
power consumption. The average power consumption of a
CMOS gate due to the switching component is given by

P= aCLV&de

where f is the system clock frequency, Vyq is the supply
voltage, Cy, is the load capacitance, and « is the switching
activity (the probability of a 0 — 1 transition during a clock
cycle).

The above expression suggests several strategies for increas-
ing the energy efficiency (reducing the power consumption
while maintaining the computation speed).

1) Activity-Based System Shutdown: Computations such as
display severs, user interface functions, and communication
interfaces are “event-drive” in nature with intermittent com-
putation activity triggered by external events and separated by
periods of inactivity. An obvious way to reduce average power
consumption in such computations would be to shut the system
down during periods of inactivity. It can be accomplished
either by shutting off the clock (f = 0) or in certain cases
by shutting off the power supply (Vaa = 0).

2) Supply Voltage Reduction: Not all software computation
is “event-driven”—data-flow systems such as DSP are “con-
tinuous” in nature. Obviously, shutdown is not an effective
mechanism for these systems. An alternative strategy is to
operate at the lowest possible supply voltage, as is suggested
by the quadratic dependence of power on supply voltage Vgq.



44 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH. 1996

BLOCKED
FOR
/o

PERFORMING
COMPUTATION

Trunning

Tblocked

Fig. 3. Event-driven applications alternate between blocked and ruuning
states. .

Since only throughput, and not latency, is the metric of speed
for most “continuous” applications, the loss in circuit speed
that results from voltage reduction can be compensated for
by architectural techniques like pipelining and parallelism that
increase throughput.

3) Switching Activity Reduction: In addition to the above
two strategies that are specific to event-driven and continuous
computations, there is a range of architectural strategies that
are applicable to all computation. Such strategies in general
try to make the system more energy efficient by reducing
the switching activity a. The reduction in o can be accom-
plished in a variety of ways—restructure the computation,
restructure the communication, restructure the memory storage
architecture and hierarchy, change the data encoding, etc.

The remainder of the paper describes specific architectural
techniques that exploit the above strategies, focussing in
particular on the first two.

III. “SHUTDOWN” AS AN ENERGY SAVING
TECHNIQUE FOR EVENT-DRIVEN COMPUTATION

As shown in Fig. 3, event-driven computations are in one
of two states: they are either blocked while waiting for an
/O event, or are performing computation. When running on
a dedicated CPU, an event-driven application will alternate
between a blocked state where it stalls while waiting for
external events such as a key press or a mouse click, and
a running state where it will execute instructions to perform
computation. If Tpjocneq and Trunning are the average time
spent in the blocked and the running states, respectively, then
one can improve the energy efficiency by as much as a factor
of 1 + Thiocked/Trunning provided the system is shutdown
~whenever it is in the blocked state.

There are two main problems in shutdown—how to- shut-
down, and when to shutdown. The first problem is addressed
by mechanisms for stopping and restarting the clock (f = 0)
or for turning off and on the power supply (Vaq = 0). The sec-
ond problem is addressed by policies such as “shut the system
down if the user has been idle for five minutes.” Although
these two problems are not really independent because the
decision about when to shutdown depends on the cost (in time
and power) of shutting down and restarting the system, we
focus primarily on the problem of deciding when to shutdown
while being cognizant of the available shutdown mechanisms.

Simple shutdown techniques, for example shutting down
after a few seconds of no keyboard or mouse activity, are
already used to reduce power consumption in current note-

BLOCK M RUN BLOCK RUN

T
Totockedl 1] Trunningl )" Thtockeal il Trunningli+1]

SN SSSS
EAS CEUTR)
ECRN SRCRN]

IDLE SHUTDOWN
WAIT OVERHEAD

REDUCED
POWER MODE
(SHUTDOWN)

RESTART
OVERHEAD

Fig. 4. Conventional shutdown approaches.

book computers. However, the event-driven nature of modern
window systems, together with efficient hardware shutdown
mechanisms provided by newer microprocessors and system
controllers, suggests the possibility of a more aggressive
shutdown strategy where parts of the system may be shutdown
for much smaller intervals of time while waiting for I/O events.
We present such a shutdown mechanism for use-on a portable
X-terminal type device where a simple algorithm derived from .
analysis of actual traces is used to predict the length of the
time spent in blocked state in order to minimize the impact on
interactive speed, while the more frequent system shutdowns
result in dramatic reductions in effective computation energy.

A. Conventional Shutdown Approaches

The portable computers available now use various shutdown
techniques that are all variants of the following basic scheme:
“Go to Reduced Power Mode after the user has been idle
for a few seconds/minutes”. Fig. 4 illustrates the philosophy -
underlying the conventional approaches to shutdown. A draw-
back of this straightforward policy is apparent—the system
continues to waste energy while it idly waits to check for lack
of user activity for a few seconds/minutes. Our experimental

traces with an X server (Section III-B2) showed that while

the X server spends 96-98% of its time in the blocked state,
the average time spent on each visit to the blocked state is
short (< a second). The conventional shutdown schemes will
therefore fail to exploit the large reduction in energy that is
otherwise possible.

Typical of the conventional approaches to shutdown ' are
the schemes used in Apple’s popular Mac Powerbook series
of portable computers, which have three different types of
reduced power modes based on shutting down parts of the
system [8]. A Power-Management IC controls the process of
entering and exiting these shutdown modes by monitoring_ the
input devices and the battery voltage, controlling the contrast
of the LCD display.

I) Rest Mode: A technique termed Power Cycling is used
in the rest mode on most models of PowerBooks. The com-
puter enters the rest mode after 2 seconds of idle time upon
which the processor registers are saved and the processor
is powered down. However, the I/O devices remain on, the
screen cursor continues to blink, and the keyboard continues
to be scanned. After 1/60 s (16.7 ms) the power to the main
processor -is restored. If there has been no I/O activity, the
processor is again shutdown for another 1/60 s. \

The power consumption is reduced by up to 90%, i.e., by
as much as x10, while in the rest mode. However, because
the rest mode is entered only after 2 s of idle time, the effec-



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 45

tive reduction in power consumption is much less dramatic.
Analysis of experimental battery life data reported in [9] for
various usage scenarios of a PowerBook suggests that enabling
the rest mode reduces the power consumption of the processor
and logic section alone by X6 whereas the power consumption
of the entire system, including the disk and display backlight,
is improved by x2. Our experiments, described later, suggest
improvements in the processor power consumption in the
neighborhood of x1.5-x2 if power cycling is used for a
processor running an X server. While x1.5-x2 is a good
improvement, our shutdown technique described later achieves
much larger improvement.

The impact of power cycling on the speed of interactive
applications is negligible.

2) Sleep Mode: The sleep mode is entered after the com-
puter has been idle for a user selected period of time, typically
in the range of a few minutes. The computer exits the sleep
mode and reverts back to the normal mode on the occurrence
of an external event, such as a key press or a modem ring-
detect. A decrease in computers responsiveness compared to
the rest mode is traded off against an increase in energy
conservation by shutting down the peripheral functions as well:
the I/O ports, the disk ports, the display, the sound circuits.
Power is retained only to the RAM and the Power-Manager IC.

Since the disk goes to sleep too, the effect on interactive
applications is substantial—spinning the disk down and back
up takes a substantial time. Further, the break-even point when
it is worth spinning-down the disk and spinning it back up
(because spinning-up the disk takes much increased power)
is about 15 seconds [9], which implies that sleep mode is
effective only for moderately long periods of idle time.

3) Shutdown Mode: This mode is typically entered on an
explicit command from the user. It has the worst impact on
the responsiveness of the computer but saves the maximum
power—on most PowerBook models the entire computer,
including the Power Manager IC, is turned off—only a tiny
amount of power is drawn for a parameter RAM. The computer
does not respond to external events at all while in this mode,
and one needs to restart it.

B. Predictive Shutdown Approaches

The straightforward shutdown schemes described above
either show only a moderate overall improvement in energy
consumption with negligible loss of computer responsiveness
as in the rest mode, or show a higher degree of improvement
but at the cost of much decreased computer responsiveness,
as in the case of sleep mode and shutdown mode. In this
section we explore a shutdown mechanism where we try to
predict the length of idle time based on the computation
history, and then shut the processor down if the predicted
length of idle time justifies the cost—in terms of both power
and responsiveness—of shutting down. The basic philosophy
behind the predictive approach can be summarized as follows:
“Use computation history to predict whether Thiockeq Will
be large enough (Tyiocked > Teost) to justify a shutdown.”
Our analysis, which is based on real-life traces, suggests that
our predictive shutdown approach leads to a much higher
reduction in effective processor power, than is obtained with

straightforward nonpredictive shutdown schemes, with only a
small loss in responsiveness.

1) Helpful Trends in Computing and Communications: Two
developments in computing and communication motivate more
sophisticated shutdown mechanisms. First, newer micropro-
cessors, such as Intel 486SL, and AT&T Hobbit, provide power
management support integrated with the system control, thus
enabling implementations of shutdown that are efficient both in
terms of time and hardware cost. Power management features
typically include the ability to shut down the clock and/or
power supply to various parts of the system, and efficient
mechanisms to store and restore the processor state for power
down. ‘

Second, the integration of computing and communication is
resulting in a paradigm where increasingly the computer will
become a device to access remote computation and informa-
tion servers across a network. Unlike independent stand-alone
PDA’s and laptop computers with wireless communication
capabilities, wireless terminals depend on network servers for
storage and application-specific computation. The computation
that is left on the personal device is largely related to the user
interface and windowing system functionality. Such software
is event-driven in nature, where the events arise because
of user interaction. Except for extremely graphics intensive
applications, a vast majority of time such software just idles
while waiting for user input. Shutting down the hardware while
the software is waiting for external events can give rise to
potentially huge savings in computation energy.

2) Potential for Reduction in Computation Energy by Shut-
down: Adopting the “X Terminal” model of computation
described above, we studied the potential for energy reduction
in the case of an X display server. Our analysis below, based
on experimentally obtained traces of X server state, suggests
that potential energy savings as high as x30 to x60 are
possible.

Fig. 5 shows that the X server process running under a
multitasking operating system, such as UNIX, is in one of
the following three states.

a) It may be blocked or stalled while waiting for either
an hardware event (key press or mouse activity) or
requests from one of the existing client applications or
a connection request from a new client.

b) It may be running on the processor doing some com-
putation.

¢) It may be ready to run but is waiting for the scheduler of
a multi-tasking time-shared operating system to schedule
it to run.

Let Thiockeds Lrunning, and Treqqy be the time spent in
the three states. If the X server were to run on a dedicated
processor, as would be the case in our X Terminal model of
computation, the server will never be in the ready state—it
would always be either blocked or running—i.e., Tready =
0. The hardware does nothing while the server is in the
blocked state and can therefore be shut down by stopping
the clock or by saving the state and then power down.
The fraction Toiocked/(Toiocked + Trunning) Of the total time
(in the case Treaqy = 0) that the server spends in the



46 . IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

RUNNING
(doing actual
computation)

BLOCKED
{waitirig for

BLOCKED

(waiting for

RUNNING
(doing actual
computation)

and client
requests)

and client
requests)

(waiting to be
scheduled)

“Off “on”
Tos= Thiocked

“Of”
Toir= Thtocked Ton= Trunning
ii. X Server running on dedicated processor

“On”

= Theady + Trunning

i. X Server running under multi-tasking OS

Fig. 5. States of X display server process.

blocked state corresponds to the maximum possible reduction
in computation energy.

In order to estimate Tyiocked/(Thiocked + Trunning) under

the condition that Treqdy = 0, and thus the potential en-
ergy reduction in the X Terminal model of computation,
we instrumented the X11R5 server from MIT, running un-
der SunOS on a SPARCstation 2, to measure Thjocheq and
Trunning + Tready. Unfortunately, Treqdy is nonzero due to
the multitasking time-shared nature of SunOS, and there is no
easy way to measure Liynning and Treqqy separately without
modifying the kernel. Even though we ran our experiments
on an unloaded workstation with no local X clients except
for the console window and the window manager, there are
background daemon processes over which we did not have any
control. However, it is important to realize that the fraction
Tblocked/<Tbloclced + Trunniﬂg + T‘r‘eady)a which we can eaSﬂy
measure, is a lower bound on the fraction of energy that can
be saved under ideal conditions. So our results err on the safe
side—the estimate of the potential energy reduction that will
result from using Tblocked/(Tblock:ed + Tmnning + Tready), will
thus be pessimistic.
* From now on, we refer to the blocked state as the off
state, and the running and ready states jointly as the on state.
Further, Toﬁ = Thiockes and Ton = ' TUNNIng + Tready~ Our
instrumented X11R5 server measures T, and T,y,, and we
use the ratio Topr/(Tog + Ton) as a lower-bound on the
maximum possible reduction in energy under ideal shut down.
Fig. 6 shows a sample trace of the time spent by the X server in
the off and the on states over a small stretch of time, and Table I
shows the results obtained by analyzing several traces obtained
from real X sessions. These X sessions consisted of running
our instrumented X11RS5 server on a SPARCstation 2 together
with the window manager olvwm and console window contool
running locally, and several typical X clients, such as xterms,
FrameMaker, xclocks, mailtool, cm (calendar manager), etc.,
running remotely. As is evident from these traces the X server
spends most of its time, ranging from 96.5 to 98.4%, in the
off state suggesting that energy reductions range from x29 to
x 62 under ideal shutdown conditions.

3) Shutdown Overhead: Although the X server trace analy-
sis in the previous section suggests that there is a tremendous
potential reduction in processor energy consumption, in prac-
tice it is much harder to realize this reduction. The chief reason
for this is that the process of shutting down and restarting has
a.cost associated with it.

ON == Running/Ready
OFF == Blocked .

(@)
=

State of X Display Server Process

200 230 240 580

Time (in seconds)

260

Fig. 6. Sample trace of X server state under UNIX.
TABLE I
ANALYSIS OF X SERVER TRACES FOR POTENTIAL ENERGY REDUCTION
Trace
1 2 ' 3

Trace Length (sec) 5182.48 | 26859.9 | 995.16
Togr (sec) 5047.47 | 264274 | 960.82
Ton (sec) 135.01 4325 | 3434
Tt (Toset Ton) 0.9739 0.9839 0.9655
Maximum Energy Reduction | x 38.4 x62.1 x29.0
(conservative estimate)

Enough processor state needs to be stored before shutting
down so that the computation can be restarted, and the state
needs to be restored to restart the computation. This process
requires additional compute time and power although the
precise numbers vary depending on the hardware and software
organization. Some newer microprocessors, such as AT&T
Hobbit and some versions of 80386 and 80486, use static
CMOS logic which gives them the ability to shutdown by
stopping the clock, thus reducing the power consumption
to the microwatts range. Very little state needs to be saved-
for this as the processor registers retain their values even
when the clock is stopped. This type of shutdown can be
accomplished in a few microseconds. However, in other cases
the entire processor state may need to be-stored in the
memory-~for example if the processor uses dynamic logic (as
most processors do) or if one wants to conserve even more
energy by doing a power down instead of just stopping the
clock. The overhead now increases substantially—to hundreds
of microseconds to several milliseconds—as work similar to
a context switch needs to be performed. At the penalty of
more overhead, even more energy can be saved by.storing
the state on the disk as opposed to the main memory as it
is no longer necessary to refresh the main memory which is
typically DRAM. The overhead now increases to hundreds of
milliseconds to several seconds.



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 47

The overhead due to shutdown creates problems. If the
overhead is large enough, then there is problem of deciding
when to shutdown. The time spent in the blocked state must be
long enough to justify the overhead. If, after deciding to shut
down, the blocking interval turns out to be too small, then one
has to pay not only a power penalty, but more importantly, an
effective slowing down of the computation speed because now
the computer has to block for an interval higher than necessary.
This slowing down translates into increased latency which,
once it increases beyond a certain point, has an adverse impact
on the interactive behavior of applications like X server.

4) Energy Reduction by Predictive Shutdown: The ideal
situation, of course, would be to make the overhead zero
or very small—but as the previous discussion suggested,
overhead really is a function of the hardware and type of
shutdown. The next best thing would be an a priori knowledge
of the length of the blocking interval right at the beginning.
Unfortunately, this is physically not possible.

One therefore has to resort to a heuristic to decide when
to shut down. We present a novel approach where based on
the recent computation history a prediction is made whether
the idle time would be long enough to break-even with the
shutdown overhead. Results demonstrate that for reasonable
values of shutdown overhead, the predictive approach allows
much higher energy savings to be achieved compared to the
straightforward nonpredictive approach, while the degradation
in interactive performance is negligible.

Restricting our analysis to X server running on a dedicated
processor, the server process starts in the on state, and makes
alternate transitions from on to off, and from off to on state.

Let Tonlt] and Top[i] be the time spent by the X server
in the ith visit to the on and the off state, respectively, for
i = 1,2,3,---. Relating to our previous terminology, T,
is the average of T,,[i] over all 4, and similarly T,g is the
average of Top[i] over all 3.

Further, let T,,s; be the time overhead associated with the
process of shutting down. We interpret this to- mean that once
we shutdown, it takes time at least equal to T,s; before the
computation can begin. Thus, if it turns out that the event
that wakes up the X server and hence restarts the computation
occurs before the expiry of this Tc,st, a penalty is paid in
terms of increased latency over the case with no shutdown.

Conventional idle-time based shut-down mechanisms, such
as Apple’s Power Cycling, are nonpredictive in nature. In our
model such a scheme involves making a decision to shutdown
if the time spent in the off state after the most recent entry
(say, the ith entry) has exceeded a certain idle-time threshold,
which is 2 seconds in Apple’s scheme. In other words we
decide to shutdown on ith entry to the off state once T\ (i)
has exceeded 2 s. Of course, once we decide to do this, the
computation cannot be restarted for at least T, time, so that
if Topr (2] would have been less than 2+ T,s;, a penalty is paid
in increased latency. The intuition behind such a scheme is that
if the idle time has exceeded 2 s then most likely the user is
going to remain idle for a long time. However, this scheme
has two disadvantages. First, no shutdown is done for the first
2 s (or whatever is the idle time threshold that is chosen), and
power is wasted during that period. Second, this scheme is

able to take advantage of only relatively long idle periods—as
our analysis showed, the average T, [¢] is less than a second,
and thus relatively short idle periods are more common.

a) Prediction of Tog[i]: To address the deficiencies of
the conventional idle-time based shutdown scheme, we de-
signed and studied a predictive scheme for deciding when to
shut down. The idea is that a simple heuristic rule is used that,
on the sth entry into the off state, predicts whether Tog[4] is
going to be long enough to justify shutting down. Specifically,
the heuristic rule predicts whether T, [§] > Tiost, and if so it
is decided to shut the processor down.

The heuristic rule uses the computation history to make
the prediction. In our case the previous values of T,,[¢] and
To[¢] form the obvious computation history. In particular,
Ton[l].. . Tonli], and Tog[1]...Tog[é — 1] can be used to
predict T [¢]. Further, the prediction rule itself needs to be
simple to evaluate and not require too much state information.
Our intuition led to two approaches and the corresponding
prediction rules:

* Our first approach was to use regression analysis to arrive
at a model for predicting T, [i]. We used Mathematica to
analyze the traces obtained for the X11RS5 server running
on a SPARCstation 2 and arrived at the following model
for To[4] in terms of Tog[i ~ 1] and T, [4].

To[i] = 0.074001 8 + 0.553 733 T o7 [i — 1]
— 0.009473 48T o5 [i — 1)* + 1.422 33T, [4]
+ 1.138 83T, [i — 1] T [i] — 1.49143T,,[i].

A quadratic model with cross terms was used because
the scatter plot of T, [i] versus To,[é] in Fig. 7, and a
similar plot of T,z [i] versus T,z [¢ — 1] shown in Fig. 8,
both suggested a hyperbolic behavior.
If the value of T,p[¢] predicted by the above model is
> Tost» a decision is made to shut the processor down.
» The second approach is based on an even simpler
intuition—T,,,[¢] corresponds to the most recent history
of T,gi], and the scatter plot of T,g(i] versus Toni]
in Fig. 7 is a L-shaped plot with the points concentrated
along the two axes. This suggests that a large value of
Tonli] is followed by a small T,z[i] with a very high
probability, and that the T,g[:] following a small value
of T,,[i] is fairly evenly distributed. This suggests the
following simple filtering (or thresholding) rule as the
prediction heuristic

To[f [7'] > Tcost a4 Ton [7'] < To’n_threshold

and, Fig. 7 suggests that for T,s; = 10 ms, a reasonable

value of Ton_threshotd 18 in the range of 10 ms to 15 ms.

Note that T, = 10 ms is a very safe upper bound on

the shutdown cost if the state is being saved in the main

memory—in reality it is more likely to be x10-x100
smaller.

b) Hit ratios for prediction schemes: The above. heuris-
tic rules to predict whether Tog(i] > Teos are similar in
nature to the replacement rules in caches. A good idea of
their efficacy can therefore be obtained by measuring the
probability with which our prediction is correct, i.e., the hit



48 [EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

40 - w "
30 | S : 1
m ;
B
5§ 20r
o
&
e tor 1
=
=
E oof 1
l—

0.60 . 0.01 0.&)2
Tonli] in seconds

0.03

Fig. 7. L-shaped Tog|i] versus Top[d] scatter plot.

15.0 —T T T —l

-g i

¢ 100 v . 1
g ;

8

e  50f Lo ]
= B
1

=

o
= ool 1

100

010 5{0
Torfli-1] in seconds

15.0

Fig. 8. Tog[i] versus Togfi — 1] scatter plot.

ratio. We used the experimentally obtained traces to simulate
the X server running with predictive shut down. Fig. 9 shows
the hit ratio for three schemes: the model-based prediction,
the on-threshold-based prediction with Ton_threshotd == 15 ms,
and the on-threshold-based prediction with Typ,_threshotd = 0.
The last case corresponds to a scheme where we always decide
to shutdown. The hit-ratio curve corresponding to the model-
based prediction shows a sudden jump at around Tes; = 160
ms. This is an artifact of the quadratic model. Finally, note that
the hit ratio for the on-threshold-based prediction scheme is
relatively insensitive to Ton_threshoid changing from 15 ms to
oo (the two curves almost overlap), whereas it does degrade
with increase in Tgps:-

c) Impact on responsiveness—Slowdown: We men-
tioned earlier that the time overhead T.s: associated with
shutdown can have a negative impact on the responsiveness
of the computer due to increased latency. This slowdown is
difficult to quantify as it involves ill-defined psychological and
biological metrics—in fact some studies even suggest second
order effects in interactive behavior such as an increase in the
user think time as the computer responsiveness degrades [10].
In the absence of any well-defined metric, we used our own
simple and intuitive measure of slowdown—it is the factor
by which the total length of the X server session i3 increased
due to shutdown being used. This increase occurs because

!

—
&~

Model Based

N

-
<

<
o

Prediction Hit Ratio
o o
E=N (=)

Dn-Threshold (N)
On-Threshold (15 Based
Based

o
)

B

L 1 T

10 100
T;ost Time Cost of Shutdown
(in milliseconds)

&
=)

Fig. 9. Hit ratio curves.

5F On time threshold (o)
Predictive

On time threshold (15ms)
Predictive

Model Based
Predictive

Slowdown Factor
W

Idle time 2 se’c, non predictive

0 T L

10 . 100
T.ost Time Cost of Shutdown
(in milliseconds)

1000

Fig. 10. Slowdown as a function of Tepst.

many of the T,op[i]’s are longer than they would have been
without shutdown because of the overhead T,,s associated
with shutdown. Fig. 10 plots the slowdown resulting from the
various schemes for different values of T,s¢. For comparison
we also plot the slowdown resulting from using a conventional
idle-time-threshold based scheme with a threshold of 2 s,
similar to Apple’s Power Cycling Scheme.

As the curves demonstrate, the conventional schemes have
almost no slowdown for all values of T,s;. However, the on-
threshold-based prediction scheme performs reasonably well
for values of T, smaller than 10-15 ms—-the slowdown is
less than 3 to 4% which is not noticeable at all. We verified this
by creating a'special version of the X11R5 server where an
artificial delay, corresponding to T¢,s:, Was added on entry to
the off state. In fact, even a 1,5, of 100 ms, which corresponds
to a slowdown of 50 to 60% for on-threshold-based prediction
scheme, resulted in a very usable, though noticeably sluggish,
X server on the SPARCstation 2. As we mentioned earlier,
Teost corresponding to saving state in the main memory and
restoring state from the main memory is typically going to
range from just a few microseconds for processors with ability
to stop the clock, to a few hundreds of microseconds or a
few milliseconds for other processors—and for theSe range of
values of Ti0s: the slowdown is negligible for the predictive
schemes. ‘ )



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 49

TABLE II
SUMMARY OF ENERGY REDUCTION
Energy %
Reduction | Slowdown
Known Tgfi] x 384 0%
i.; Non-Predictive Idlé—Time Threshold (2 seconds) x 1.7 ; 0%
.EE' On-Threshold-Based Predictive Scheme (T,,,_sreshotd = 15 m$) x20.1 0%
[__.§ On-Threshold-Based Predictive Scheme (T, mreshota = ) x38.4 0%
Model-Based Predictive Scheme x 384 0%
B Known Ty4i] x25.7 0%
& | Non-Predictive Idle-Time Threshold (2 seconds) x 1.7 0%
E,? On-Threshold-Based Predictive Scheme (T, shreshotd = 15 ms) x20.1 27 %
[.:g On-Threshold-Based Predictive Scheme (T, _threshold = ©°) x38.4 2.8%
Model-Based Predictive Scheme x38.4 28 %
Known Tygfi] x5.1 0%
£ | Non-Predictive Idle-Time Threshold (2 seconds) x 1.7 025 %
% On-Threshold-Based Predictive Scheme (T, spyeshold = 1 mS) x2.1 21.1%
h?) On-Threshold-Based Predictive Scheme (T, sreshotd = ©°) x38.4 59 %
Model-Based Predictive Scheme x 384 59 %

d) Reduction in computational energy: Finally, we
evaluated the various predictive, nonpredictive, and ideal
shutdown schemes from the point of view of reduction in
computational energy. The results are summarized in Table
II for three values of T¢psi—0 ms, 10 ms and 100 ms—the
former being the ideal case, and the latter two being safe upper
bounds for storing the processor state in main memory and on
disk respectively. The results dernonstrate that for 15y = 10
ms, a conservative upper bound for most processors, the
predictive schemes have much superior energy savings at
negligible slowdown. However, for T¢os: = 100 ms, which
“may correspond to the case where the processor state is
saved on the disk, the predictive schemes have noticeable
degradation of interactive performance.

IV. ARCHITECTURE-DRIVEN VOLTAGE REDUCTION

Not all programmable computation, even on user-interaction
dominated portable devices, is event-oriented—many func-
tions that are not event-driven and instead execute contin-
uously also require implementation as software running on
microprocessors or embedded core processors on an ASIC.
In fact embedded software for DSP core processors on an
ASIC has emerged as the dominant method of implementing
speech coding, speech compression, text-to-speech synthesis,
simple speech recognition, modem functionality, and many
other signal processing functions in portable devices such as
cellular phones, PDA’s, etc. Given the “continuous” nature
of signal processing functions, shut-down strategies such as

the predictive shut-down technique of the previous section
are not effective. The quadratic dependence of power on
supply voltage Vja however suggests another mechanism.for
energy efficiency—reduction in supply voltage. Unfortunately,
as shown in Fig. 11(a), operation at reduced supply voltage
comes at the expense of increased gate delays, and conse-
quently slower clock frequency for a given circuit. However,
certain nice attributes present in most DSP algorithms—their
performance is determined by throughput alone and not la-
tency, and their ample inherent concurrency—often make it
possible for one to use architectural techniques such as paral-
lelism and pipelining to increase the computation throughput
which can then be traded off against the loss in speed due
to voltage reduction for a net gain in energy efficiency for
unchanged throughput.

This underlying approach of applying pipelining and paral-
lelism to aggressively reduce the supply voltage (down to the
1-1.5 V range) and therefore increase the energy efficiency has
been used to implement ASIC’s with dedicated architectures
for DSP algorithms [3], [4]. In this section, the goal is to apply
architecture-driven voltage scaling to software programmable
computation. While the supply voltages of many micropro-
cessors have indeed come down to 3.3 Vor 3 V from 5V,
the choice of 3.3 V has been driven by the fact that for this
level of voltage scaling the degradation in system performance
(clock rate) is not very significant. Architecture-driven voltage
reduction, on the other hand, reduces voltage even further
into the realm where there is a significant reduction in clock



50

7.0
=
[
g ______________________
- 50
S
g 30
Y
o
2z
1.0 ! . .
1.0 L5 2.0 2.5 3.0
Supply Voltage, V

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

70} ldeal Spe)z‘ed
_______________________ :
o 50r \
3
@ \ T
2 30 !
@ > . Real-life
1 Speeddps
t
X L i 2 i L
W =35 7 s

Hardware Concurrency, N

Fig. 11. Trade-off between voltage and hardwareféncurrency. (2) Normalized gate delay versus supply voltage. (b) Speed-up versus hardware concurrency.

rate, but uses architectural concurrency to keep the system
throughput at its original level.

A. Voltage-Concurrency Trade-Off and
Architectural Bottlenecks

As already mentioned, the basic idea in architecture-driven
voltage reduction is to compensate for the loss of speed due to
increased gate delay when operating at a lower voltage, with
the increase in speed due to increased hardware concurrency.
The power consumption is reduced at a fixed computation
speed (throughput). Hardware concurrency can be due to paral-
lelism or pipelining or a mix of the two. For example, hardware
that performs /N operations in parallel has concurrency of
N. Similarly, a hardware with IV pipeline stages so that N
successive operations are overlapped also has a concurrency
of N. Compiler transformations such as parallelization and
software pipelining play an important role in restructuring
the computation so that the hardware concurrency is fully
exploited.

Fig. 11 illustrates this trade-off between voltage and hard-
ware concurrency by plotting the curve for increase in gate
delay (normalized to gate delay at 3.0 V) next to hypothetical
curves for increase in throughput (speedup) due to hardware
concurrency, and using the same scale for normalized gate de-
lay and speedup. If one had a hardware concurrency of 6—for
example, by using a six processor parallel computer—then
one can obtain an ideal speedup of x6 as shown by the
plot in Fig. 11(b). Now if one were to reduce the voltage
from 3.0 V to a level where the gate delay increases by x6,
the clock frequency will have to be reduced by x6 as well.
Each of the processor will therefore slow down by X6 so that
the net speedup with the six processor machine operating at
the reduced voltage will be 1 compared to the uniprocessor
machine operating at 3.0 V. In general, the strategy would
be to reduce the voltage to a level where the normalized
gate delay increases by the same factor as the speedup. The
throughput of the concurrent hardware operating at the reduced
voltage level will then be the same as the throughput of the
nonconcurrent hardware operating at the original voltage of
3.0 V. For our example the reduced voltage level at which
the gate delay increases by x6 is 1.3 V, as the dotted lines
in Fig. 11 show. Assuming that the switched capacitance

for the six processor machine was X6 Higher than for the -
uniprocessor machine, the power is.reduced by a-factor of
(1/6) * (3/1.3) * (3/1.3) % (6/1) = 5.3.

Consider a more detailed analysis. Let S(V) be the speedup
for a hardware concurrency of N from Fig. 11(b). Obviously,
for nonconcurrent hardware N = 1, and S(1) = 1. Let V(d)
be the voltage for a normalized gate delay d in Fig. 11(a), with
V(1) = 3.0 V being the reference point. The initial hardware
has N =1,5(1) =1, and V(1) = 3.0 V. Let f(1) and f(N)
be the clock frequencies for the initial and the final hardware,
let C(1) and C(N) be the switched capacitances, and let P(1)
and P(N) be the power consumptions.

If the hardware concurrency is due to parallelism, then
one can operate each of the NV parallel hardware units at a
frequency f(N) = f(1)/S(N) so that the effective throughput
is unchanged. Further, parallel hardware units will require
some overhead circuit so that the total ‘capacitance can be
expressed as C(N) = (N + e(N)) « C(1) where (N)’
is the overhead capacitance. Assuming unchanged switching
activity, it follows that

P _ CV2R()
P(N)  C(N)V(S(N))2f(N)
) vy \?
TN (V<S<N>>> |
Similarly, if the hardware concurrency is due ‘to N-level
pipelining, then the hardware can be operated at a reduced
voltage of V(S(IN)) so that the clock frequency will be
FIN)Y = N « f(1)/S(N), which in turn gives an effective
throughput that is unchanged. Let the overhead capacitance:
due to pipelining be (V) * C(1)/N, so that the total capaci-
tance is (1+&(V)/N)*C(1). Assuming unchanged switching
activity, the ratio of the power consumption is again given by
an expression identical to that in (1). i

An increase in energy efficiency is obtained whenever
P(1)/P(N) is > 1. In the ideal case of linear speedup
(S(N) = N) and no capacitive overhead (¢(N) = 0), it
is clear from (1) that P(1)/P(N) is indeed > 1 because
V(1) > V(S(N)). In the ideal case, one can get arbitrarily
large improvements in energy efficiency by continuing to
increase hardware concurrency and decrease voltage until the
devices stop working. ' .

M



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 51

However, (1) points to two fundamental architectural bot-
tlenecks that prohibit an arbitrary increase in energy efficiency
by reducing voltage. First, the speedup is not linear in most
cases—as shown in Fig. 11(b), real examples typically show
a speedup that starts saturating, and even decrease, as IV is in-
creased. In parallel hardware this may be due to lack of enough
parallelism in the computation, or due to effects like bus con-
tention. In pipelined hardware the speedup may not be linear
because of granularity of pipelining, or because of the exis-
tence of pipeline interlocks and feedback cycles in the com-
putation. The second architectural bottleneck occurs because
e(N) is not zero in real world. In parallel hardware, capacitive
overhead is contributed by data multiplexing/demultiplexing,
bus arbitration, etc., while in pipelined hardware the capacitive
overhead is contributed by pipeline registers.

Together these two architectural bottlenecks—nonlinear
speedup S(N) and capacitive overhead e(IN)—place a
restriction on the increase in energy efficiency that can be
obtained.

B. Exploiting Concurrency in Programmable Computation

Preceding discussion makes it clear that the energy effi-
ciency can often be increased by trading voltage reduction
with increase in concurrency. There are two independent issues
in this trade-off: the available hardware concurrency, and the
concurrency that is inherent in the computation algorithm.
Compared to typical ASIC’s it is harder to exploit concurrency
in- software computations. Three types of concurrency are
inherent in software: i) Instruction level parallelism [11] which
can be discovered by dataflow analysis and enhanced by
software pipelining, loop unrolling, and branch prediction, ii)
thread level parallelism as manifested, for example, in coarse
grained parallelism of an X server handling muitiple clients
via separate threads to reduce unnecessary blocking, and iii)
process level parallelism as exploited by time-sharing systems
to improve throughput.

Complementary to algorithmic concurrency is hardware
concurrency. There are three main ways of increasing the
hardware concurrency in programmable computers: i) increase
the number of processors to exploit process and thread level
parallelism, with accompanying hardware and OS overhead, ii)
increase the number of functional units to exploit instruction
level parallelism, with accompanying overhead due to more
complex instruction issue, and iii) increase the levels of
pipelining to also exploit instruction level parallelism.

The success of a compiler in utilizing the intrinsic con-
currency of an algorithm to exploit the available hardware
concurrency is a major determinant in achieving energy effi-
ciency.

C. A Power Consumption Model for MIMD

To evaluate the effect of hardware parallelism on power,
a model to estimate the power consumption needs to be
developed. For this we need to define the following quantities.

Let S(N) = computation speed when the MIMD system
 has N processors. The speed metric S() could represent
either throughput or latency. Also, let V(N) = Lowest
supply voltage at which we can run the N processors while

maintaining the same throughput as with the uniprocessor
system. Assume that the uniprocessor is running at a reference
voltage of 3 V (ie., V(1) = 3 V). Given the speedup
factor (based on the number of processors and algorithmic
constraints), the supply voltage V(N) can be determined
from the function shown in Fig. 11(a) which is obtained
by characterizing the semiconductor process. For example,
if N = 4, and if S(4) = 4, then from Fig. 11(a), V(4) is
approximately 1.5 V.

Ignoring static power consumption due to leakage currents,
the power consumed by CMOS circuits is given by C V2« f.
Therefore, the power consumption of a uniprocessor is

P(l) = (Cprocesso’r + Cinterconnect + Omemory)v(l)zf (2)

where Cprocesso’r; Cinterconnect and Cmemory are deter-
mined for a specified set of hardware modules (e.g.,
DSP32C or 386SL) and technology (PCB interconnect >3-4
pF/inch routing capacitance). For example, for a DSP32C
processor, the average capacitance switched is given by
1.2 W/({5.25)?25 MHz = 1.75 nF (the power of 1.2 W,
obtained from data sheets, does not include the I/O power). For
interconnect, considering both the bus and pin components,
and assuming an average switching activity, the capacitance
was determined to be 0.15 nF.

Now consider extending the model presented in (2) to
multiple processors. Ideally, speedup grows linearly with the
number of processors; however, due to interprocess communi-
cation overhead, the speedup is typically not linear. Similarly,
parallelism will introduce capacitance overhead. The overhead
is often attributed to an increase in interconnect capacitance
(longer wires on the PC board/MCM), loading capacitance
(more processor on the shared bus), control capacitance,
interprocess communications overhead (e.g., more memory
1/O transactions), etc. Taking these factors into account, the
power consumption as a function of the number of processors
is given by

P(N) = [NCP‘I‘OCESSOT + Ncinterconnect(N + %Cover)
2
+ Conmors (V + HCorel 50
where %Clyer is the interprocessor communications overhead.
Note that the physical interconnect capacitance, the second
term, increases linearly with the number of processors. This
is a reasonable assumption since for PCB interconnect tech-
nology, the processors can be placed right next to each other
(in a linear fashion) and routing can be performed on multiple
layers (unlike ASIC’s where the routing is confined typically
to 2 metal layers).

Note that a minimum bound on the supply voltage, V, can

be set by one of the following.

* Noise immunity requirements.

e S(N) stops increasing with N. Using the curve in
Fig. 11(a), a maximum bound on N can be translated
into a minimum bound on V.

¢ There may be a maximum bound on N due to operating
system and other software considerations. This too can be
translated into a corresponding minimum bound on V.



52

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 4, NO. 1, MARCH 1996

3.0 ; —

20t 1

1.0 | . ]

% Communication Overhead

7.0
Ideal Speedup
o
g 5.0} b |
3 ™
‘% Actual Speedup
3.0 Supply Voltage
/ (Fixed Throughput) ]
10—

1 2 3 4 5 6 7 8

Fig. 12. Speedup and Vyq versus V.

Intuitively, a model of speedup in MIMD will have the
following characteristics.

¢ For small values of N the speedup will be close to linear.

* At higher values of IV, the speedup will start saturating

and reach a peak.

¢ Finally, for even larger values of N, the speedup may

actually start falling off. This may happen because, for
example, the arbitration overhead for access to a shared
bus may just grind the system to a halt.

Such a “hump” like speedup curve is characteristic of shared
bus centralized memory systems. For our purposes, there is no
rational reason to parallelize beyond the point of saturation. In
other words, we are only interested in the initial part of the
curve. One such model of speedup, using analytical results
from [12], is given by the -following

N

SIN) = ~=1

3
where r is a constant. As N gets large, the speedup will
saturate to r. The value of r depends on, among other things,
the ratio of computation to communication, the granularity and
number of interacting tasks, and the communication network.

D. Example: CORDIC on a MIMD Using
Thread Level Parallelism

- First, we will consider signal processing applications run-
ning on programmable processors. For such applications, it
is typically throughput (and sometimes latency) which is the
design constraint rather than trying to compute as fast as
possible. For example, a speech codec has to compress and
decompress speech at a sample rate of 8 kHz, however, once
this throughput requirement is met, there is NO advantage
in making the computation faster. As described earlier, by
making the computation faster (using more parallelism for ex-
ample), the supply voltage can be dropped and hence the power
can be reduced while still meeting the functional throughput.

Typical applications include filters, speech processing, robotics

and real-time image processing.

Most examples in this class exhibit a substantial amount of
concurrency. For example, all DSP applications are executed
in an infinite time loop, giving rise to. temporal concurrency. In
addition, several exhibit spatial concurrency. For low-power

0.0

L

L

L

L

1 2 3 4 5 6 7 3
Number of Processors, N

/

Fig. 13. %Communications overhead versus V.
operation (as we will see), it is very important to detect
and exploit concurrency since we can run at reduced supply
voltages. For example, temporal concurrency can often be ex-
ploited by pipelining, resulting in dramatic speedup and hence
lower power for a fixed throughput. For application that have
a lot of recursion (feedback loops), it often necessary to apply
a series of transformations (like loop unrolling) to achieve
speedup. Compilers have been developed to effectively exploit
concurrency in DSP applications [13].

To study the power trade-offs of DSP multiprocessor imple-
mentations, a cordic algorithm (obtained from [13]) is studied
that converts cariesian to polar coordinates iteratively in 20
steps. It takes as input an (X,Y) coordinate, as well as
an array of correction angles. The loop iteratively calculates
the corresponding amplitude and phase. Since each iteration
is dependent on the results of the previous. iteration, the
computation is sequential in nature.

A scheduling algorithm which only exploits spatial con-
currency would perform poorly on this example. However,
optimizing using transformations like pipelining the loop and
assigning successive loop iterations to successive processors,
significant speedup can be achieved. The analysis is based on
the DSP32C processor power numbers. Fig. 12 shows the ideal
speedup (linear with processors) and the actual speedup ob-
tained. Fig. 12 also shows the lowest supply voltage (V(IV))
at which the various multiprocessor implementations can run
while meeting the same functional throughput as the unipro-
cessor version. Fig. 13 shows the communications overhead
as a function of the number-of processors.

Fig. 14 shows the power consumption as a function of
N. We see that a factor of 3.3 reduction in power can be
accomplished by reducing the supply voltage from 3 to 1.5 V.
The power starts to increase with more than 6 processors since
the overhead circuitry (interconnect capacitance) starts to dom-
inate, resulting an optimum number of processors for power.

E. Low Power Computers—Multiple Slow CPU’s More
Energy Efficient than a Single Fast CPU?

The discussion in this section shows that if energy efficiency
is the consideration, it is better to use concurrent (parallel



SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES 53

1.0 ' "

e
%)

x3.3 reduction

Normalized Power
o
N

I~
~

02—
1 2 3 4 5 6 17 8

Number of Processors, N

Fig. 14. Power versus V.

or pipelined) slower hardware operating at a lower voltage
than to use nonconcurrent faster hardware at a higher voltage.
To put it differently, multiple siower CPU’s are more energy
efficient than a single fast CPU for applications with enough
algorithmic concurrency. This suggests that from a power
perspective it may be better for future microprocessor chips
to consist of multiple slow and simple CPU’s operating at
a slow clock frequency and a low voltage-—a conclusion
which is just the opposite of the current trend toward complex
CPU’s operating at extremely high frequencies (many 100’s
of MHz). However, since applications also have nonparallel
components, it might make sense to have a fast processor with
efficient shut-down circuitry for handling the serial portion
of a computation, together with an array of multiple slow
processors for the remainder.

V. ARCHITECTURE TECHNIQUES FOR
REDUCING SWITCHING ACTIVITY

While the predictive shutdown and architecture-driven volt-

age reduction techniques were specifically targeted at event--

driven and continuous data-flow applications respectively,
there is a range of architectural techniques that are more widely
applicable because they try to restructure the computation,
communication, and memory architecture so as to reduce the
switching activity. One such technique is I/O bus switching
activity reduction for which the various approaches can be
classified into three categories: i) Reduction in data traffic,
ii) Change in transmitted data format, and iii) Change in
transmitted data encoding.

Approaches belonging to the first category rely on data traf-
fic reduction to get reduction in switching activity. Examples
include lossless data compression [14], variable length instruc-
tion encoding for low power (e.g., in AT&T’s Hobbit), and
on-chip caches to increase.energy efficiency [15]. The second
category approaches achieve switching activity reduction by
selecting a suitable spatial and temporal format to transmit
data bits, without changing the data bits themselves. The
third category approaches rely on encoding the information
bits to reduce the switching activity. For example, gray-
coded program counters and auto-increment/decrement ad-

dress modes [16] can reduce switching activity when accessing
a sequence of memory addresses. Also in this category is our
observation that the number of bit transitions is considerably
reduced if sign-magnitude encoding is used instead of two’s
complement encoding to represent values of a data stream
that has frequent zero crossings and a small dynamic range.
Fig. 15, which shows the transition probabilities for various bit
positions, makes it clear that the activity in higher order bits
is significantly higher in the two’s complement representation
where the higher order bits are used for sign extension.

VI. CONCLUSION

We described three broad architectural approaches for
energy efficient programmable computation: predictive
shutdown, concurrency driven supply voltage reduction,
and switching activity reduction. A significant reduction in
power consumption can be obtained by employing these
architectural techniques. For example, parallel processors
operating at a reduced voltage can substantially improve
the energy efficiency of a fixed throughput computation (by
a factor of 4 in the example we described). For applications
where continuous computation is not being performed (like
X-server, etc.), we have shown that an aggressive shut down
strategy based on a predictive technique can reduce the power
consumption by a large factor compared to the straightforward
conventional schemes where the power down decision in based
solely on a predetermined idle time threshold.

In addition to the specific techniques described in the pa-
per, our three architectural approaches—predictive shutdown,
concurrency driven voltage scaling, and switching activity
reduction—can also be applied to other parts of an architecture.
For example, our predictive shutdown heuristic may be applied
to manage the shutdown of peripherals such as disks. An
on-line algorithm that makes the shutdown decision using a
prediction of the time to next disk access may result in better
power reduction compared to more conventional threshold
based policies for disk shutdown [17], [18].

A second example where the ideas embodied in our tech-
niques can be applied is the combination of parallelism-driven
voltage reduction with switching activity reduction to increase
the energy efficiency of memory operations when the access
pattern is sequential in nature. Such sequential access patterns
occur, for example, when fetching video data from a frame-
buffer memory or when fetching cache lines from main
processor memory or when writing a page of virtual memory
back to the disk. Instead of accessing data from memory in
a serial fashion, several words can be read from memory
and the memory can be .clocked at a lower rate for the
same throughput. For example, reading four words in parallel
implies that the memory can be clocked at 1/4 the rate
of a serial implementation in which 1 word is read every
cycle. The time available to read the memory for the parallel
implementation is four times as long as for the serial version
and therefore the supply voltage can be dropped for a fixed
meinory throughput. If the serial implementation runs at a
supply of 3 V to meet a given throughput, then the parallel
version can run at a supply voltage of 1.3 V while meeting



54 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL: 4, NO. 1, MARCH 1996

Two’s Complement
1.0 I a w.

Slowly Varying

Transition Probability

0 2 4 6 8 10 12 14
Bit Number

Fig. 15. Activity reduction using sign-magnitude representation.

throughput requirements (based on the delay versus Vyq for
‘the SRAM in [4]).

In general purpose computation, data and instructions are
not always accessed in a sequential fashion and therefore the
above scheme of lowering voltage will result in Jower memory
throughput. However, parallel memory access can also be
used to reduce, at a fixed voltage, the amount of capacitance
that is switched when sequential memory locations are read.
Since voltage is fixed, nonsequential reads pay no penalty.
An example is the approach presented in [19] which uses
parallel word access to reduce power in the sense amplifiers
and the control circuitry. Four words are read from memory
in a differential fashion and a 4:1 multiplexor (which also
produces differential outputs) is used to select one of the
words to be fed into a sense-amplifier. If the next word that is
to be accessed from memory is sequential, then the memory
is not precharged and evaluated; instead, the output is taken
directly by switching the 4:1 multiplexor. In this case, the
sense-amplifier is not needed since the memory output settles
out in the “-st cycle and therefore the sense-amplifier is not
enabled (w: =h reduces power consumption). Also, the control
overhead of a memory access (block select, address transitions
etc.) is reduced. This cache architecture has also been studied
under the rames Block Buffered Cache and Subblock Buffered
Cache by {15] who report power savings of 40-50% over
nonbuffered cache designs for typical cache sizes (and as high
as x8 savings for large cache arrays).

In conclusion, not only do our architecture techniques result
in significant power reduction, but the underlying concepts
of predictively shutdown, parallelism, and switching activity
reduction are also applicable to power reduction in other parts
of the systers such as the storage (memory and disk) hierarchy.

REFERENCES

{11 B. Nadel, “The green machine,” PC Mag., vol. 12, no. 10, p. 110, May
25, 1993.

[2] R. W. Brodersen, A. Chandrakasan, and S. Sheng, “Technologies for
personal communications,” in Proc. VLSI Circuits Symp., Japan, 1991.

[3] A. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, Apr. 1992.

[4] A. Chandrakasan, A. Burstein, and R. W. Brodersen, “A low- -power
chipset for portable multimedia applications,” in Proc. ISSCC, Feb.
1994, pp. 82-83.

Sign Magnitude

1.0 —————
2
:E 0.8+ Rapidly Varying
©
S o6}
o
& 04
s§
g 0.2
=

0024 6 & 10 12 14

Bit Number

[5] M. Weiser, “Some computer science issues in ubiquitous computing,”
Commun. ACM, vol. 36, no. 7, pp. 75-85, July 1993.

[6] G. H. Forman and J. Zahorjan, “The challenges of mobile computing,”
IEEE Comput., Apr. 1994.

[7] J. S. Eager, “Advances in rechargeable batteries spark product inno-
vation,” in Proc. 1992 Silicon Valley Comput. Conf Santa Clara, CA,
Aug. 1992, pp. 243-253.

[8] Apple Computer Inc., “Power manager IC, and reduced power modes,”
in Technical lnzroduclion to the Macintosh Family. Reading, MA:
Addison-Wesley, Oct. 1992, ch. 20, 2nd ed.

[9]1 B. L. Berkoff, Taking Charge: Powerbook-Battery Management, Ma-

cUser, Feb. 1993.

J. T. Brady, “A theory of productivity in the creative process,” IEEE

CG&A, May 1986.

M. Butler et al., “Single stream parallelism is greater than two,”

18th Int. Symp. Comput. Architecture, May, 1991.

H. S. Stone, “Multiprocessor performance,” in High-Performance Com-

puter Architecture. ' Reading, MA: Addison-Wesley, 1987, ch. 6.

P. D. Hoang, “Compiling real-time digital signal processing applications

onto multiprocessor systems,” Ph.D. dissertation, EECS Dep., Univ.

California, Berkeley, June 1992,

A. Wolfe and A. Chanin, “Executing compressed programs on an

embedded RISC architecture,” in Proc. 25th Annu. Int. Symp. Microar-

chitecture, Nov. 1992.

J. Bunda, D. Fussell, and W. C. Athas, “Evaluating power implications

of CMOS microprocessor design decisions,” in Int. Workshop on Low

Power Design, Apr. 1994.

C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Low-power architecture

design and compilation techniques for high-performance processors,”

Digest of Papers, IEEE COMPCON Spring *94, Mar. 1994.

F. Douglis, P. Krishnan, and B. Marsh, “Thwarting the power-hungry

disk,” in Proc. 1994 Winter USENIX Conf., Jan. 1994, pp. 293-306.

K. Li, R. Kumpf, P. Horton, and T. Anderson, “A quantitative analysis

of disk drive power management in portable computers,” in Proc. 1994

Winter USENIX Conf., Jan. 1994, pp. 279-291.

M. Muller, “The ARM6: Power efficiency & low cost,” Hot Chips Symp s

Aug. 1992, pp. 3.3.1-3.3.11,

[10]
[11]
[12]

in Proc.

[13]

(14])

[15]

(16}

[17]

[18]

[19]

Mani B. Srivastava (S’87-M’92) received the
B.Tech. degree from the Indian Institute of
Technology, Kanpur, India, and the M.S. and
Ph.D. degrees from the University of California,
Berkeley.

He is currently a Member of Technical Staff in
the Networked Computing Research Department
at AT&T Bell Laboratories, Murray Hill, NJ. His
primary research interests are in. architecture and
synthesis of network interfaces, system-level design
automation issues such as hardware-software co-
design for DSP and embedded systems, and networking issues in wireless
computing. He also maintains interests in high-level synthesis for DSP and
low-power computing.




SRIVASTAVA et al.: PREDICTIVE SYSTEM SHUTDOWN AND OTHER ARCHITECTURAL TECHNIQUES . 55

Anantha P. Chandrakasan received the B.S.,
M.S., and Ph.D., degrees in electrical engineering
and computer sciences from the University
of California, Berkeley in 1989, 1990, 1994,
respectively.

Since September 1994, he has been Assistant Pro-
fessor of Electrical Engineering at the Massachusetts
Institute .of Technology, Cambridge. He has been
awarded the Analog Devices Career Development
Chair. His research interests include the low-power
implementation of custom and programmable digital
signal processors, low-voltage circuit design, design of wireless systems, and
computer-aided design tools for VLSIL.

Robert W. Brodersen (M’76-SM’81-F82)
received the B.S. degrees in electrical engineering
and in mathematics from the California State
Polytechnic University, Pomona in 1966. He also
received the Eng. and M.S. degrees in 1968 and
the Ph.D. degree in 1972 from the Massachusetts
Institute of Technology, Cambridge.

From 1972 to 1976, he was with the Central
Research Laboratory at Texas Instruments, Dallas.
In 1976, he joined the Electrical Engineering and
Computer Science faculty at the University of
California, Berkeley, where he is currently a Professor. In addition to teaching,
he has been involved in research inclusive of new applications of integrated
circuits, which is now focused in the areas of low-power design and wireless
communications.

Dr. Brodersen has won conference best paper awards in Eascon (1973),
International Solid State Circuits Conference (1975), and the European Solid
State Circuits Conference (1978). He has received the 1979 W. G. Baker award
for the outstanding paper of the IEEE Transactions and Journals, the 1985
Best Paper Award in the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
(1985), and the 1992 Best Tutorial Paper of the IEEE Communications
Society. In 1978, he was named the outstanding engineering alumnus in
California State Polytechnic University. In 1983, he was co-recipient of
the IEEE Morris Libermann Award for “Outstanding Contributions to an
Emerging Technology.” In 1986, he received the Technical Achievement
Award from the IEEE Circuits and Systems Society and in 1991 from the
IEEE Signal Processing Society. In 1988, he was elected a member of the
National Academy of Engineering.



