
Web-based Distributed VLSI Design

Debashis Saha Anantha P. Chandrakasan
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract
Emerging “systems-on-a-chip ” will require a design

environment that allows distributed access to libraries,
models and design tools. In this paper we present a
framework using the Object- Web technologies to im-
plement Web-based CAD. The framework includes the
infrastructure to store and manipulate design objects,
protocols for tool communication and WebTop, a Java
hierarchical schematic/block editor with interfaces to
distributed Web tools and cell libraries.

1 Introduction
The design of future high-performance VLSI sys-

tems will require a distributed design and verification
methodology due to the diverse expertise required at
various levels of abstraction. These systems will re-
quire tools and generators that allow exploration of
the design space at all level of abstraction. It will be
desirable to provide access to these tools from a simple
terminal with standard interfaces.

The advent of Internet has opened new opportuni-
ties in the areas of distributed design and the World
Wide Web has emerged as the most desirable platform
for distributed access to information. In the last few
years the Web has also emerged as a strong platform
for remote access to tools [l, 2, 31. With Web based
CAD, designers can utilize diverse utilities and exper-
tise available all over the world.

VLSI system design typically involves design spec-
ification and verification, optimization and synthesis,
generation of physical design and verification. A dis-
tributed microsystem design framework will facilitate
seamless access to cell libraries and VLSI CAD tools
like synthesizers, generators, optimizers and simula-
tors distributed over the internet (Figure 1). The en-
try point in the framework is a hierarchical design ed-
itor which should be capable of accessing cell libraries
located in different servers on the internet. The editor
should be capable of extracting the design into netlists
of various formats (e.g., SPICE, Verilog, etc.) and
then interface with different CAD tools distributed
over the Web.

Design Editor

Figure 1: Distributed Microsystem Design Framework

The Web tools can themselves be distributed in
the sense that each tool may invoke many other dis-
tributed tools. The example depicted in Figure 2, in-
volving early exploration of power dissipation, demon-
strates the usefulness of such a hierarchical framework.
It is often desirable to specify their design in mixed
levels of abstraction. For example, the designer may
want to specify the design as a combination of high
level description (e.g., VHDL), parameterized library
modules (e.g., ROM) and low-level schematics (e.g.,
transistors and gates). Several Web based tools ex-
ist to estimate power dissipation at different levels of
abstraction (e.g., Pytha [9], PowerPlay [l], PPP [5]).
Then a designer builds a tool Powerzone which given
a circuit design specified in various levels of abstrac-
tion, would generate the estimated power dissipation
of that circuit. Powerzone calls appropriate tools on
the Web for the specific technology for appropriate ab-
straction of the design and generates the total power
dissipation of the circuit. Once Powerzone is avail-
able on the Web, it could be used by other integrated
CAD environments to estimate the power dissipation.
Therefore we have a hierarchy of tools which encap-
sulates other tools on the Web to build a new tool on
the Web, irrespective of the geographical location of
the tool.

449
1063-9667/97 $10.00 O 1997 IEEE

Internet

Client Browser

f ,
M

CAD tool at MIT Web Server

Figure 2: Hierarchical Web based design tools

2 Related Work
The popularity of the internet and the Web has

lead to the development of several distributed de-
sign tools. An information based design environment,
which helps users collect and manage information in-
dependent of the implementation platforms has been
proposed [4]. PowerPlay, which helps in system level
exploration of power consumption is available on the
Web [l]. The WELD project[3], aims to construct a
distributed CAD design environment enabling Inter-
net wide IC design. A gate level synthesis and simula-
tion tool, PPP, for power optimization can be accessed
via a web interface [5]. There have also been efforts
to provide Web-based Interfaces to executable CAD
softwares[2, 61. A network based simulation labora-
tory has been developed which can be accessed via
a standard WWW browser [SI. Executable directed
hypergraphs have been used to describe collaborative
design activities on the internet [7]. Although there
are numerous instances of design tools being available
over the Web, there has been limited attention to the
design of a framework which would allow the utiliza-
tion different Web tools in a uniform and transpar-
ent fashion. In this paper we show how a distributed
framework could be built, utilizing the core Web tech-
nologies, t o support efficient communication and data
exchange between different Web based tools.

3 Enabling Technologies for Web

In this section, we describe the technologies, mecha-
nisms and protocols available that support distributed
applications with the standard Web interface. Current
tools support execution of applications at the server

based CAD

side using HTTP and CGI and use Java technology,
scripts and plug-ins to create applications that are exe-
cuted locally on the user’s machine. Another approach
is to use object technologies to define, locate and re-
quest computational services from participating appli-
cations, both remotely and locally. In this approach,
the Web takes the role of providing uniform access and
presentation mechanisms.
3.1 HTTP/CGI, Java and CORBA

CGI programs are usually referred to as scripts
which run on the server machine and produce the
output (usually HTML output) to be displayed on
the clients browser. The Hypertext Transfer Proto-
col(HTTP) and CGI are the protocols that govern in-
teractions between the client, server and script.

CGI programs and forms lack the interactivity and
complex user interface. Java allows us to do complex
client-side processing in a platform independent man-
ner. Java applets can be embedded in HTML pages,
which are loaded from the Web server and run on the
client-side browser as a mini-application.

The Common Object Request Broker Architecture
(CORBA) [lo] provides an infrastructure which en-
ables invocations of operations on objects located any-
where in the network as if they were local to the
application using them. CORBA simplifies hetero-
geneous distributed computing and enables location
transparency, activation transparency, language inde-
pendence, and platform neutrality. CORBA is object-
oriented, enabling many potential benefits such as
reuse.
3.2 Object-Web Architecture

With the emergence and acceptance of industry-
defined standards such as CORBA, Web standards
such as HTTP and Java and the world-wide distribu-
tion medium of the internet, we propose to use a open,
interoperable, reliable, scalable Object-Web comput-
ing architecture.

The Object-Web architecture (Figure 3), is a three
tier architecture consisting of the client tier, the ap-
plication and data tier and the middle tier provid-
ing the middleware services. In this architecture, the
client tier is built on Web browsers to provide a stan-
dard graphical interface, through which users can ac-
cess tools and information via the internet and the in-
tranets. Lightweight Java client applications can run
in Java-enabled browsers. Application can also be ac-
cessed using the HTML form based interface.

The application and data tier consists of different
application tools and databases distributed across the
network. The tools are heterogeneous and run on di-
verse platforms. The application tools can be either

450

Client Tier Middleware Application and
Data Tier

Java Applet

HTML form

/
-

Internet and

Figure 3: Object-Web Architecture for Distributed
Computing

tools which are invoked through CGI protocols or can
be objects providing their respective services. The ap-
plication tools have well defined interfaces and they co-
operate to build distributed applications through the
middleware services.

The middleware services such as CORBA ORBs,
HTTP Common Gateway Interfaces or the Java Re-
mote Method Invocation (RMI) connect client users
to resources and applications in the application tier.
Client and server objects alike can send messages to
other objects throughout the network using ORBs or
invoke remote applications using CGI or RMI. Web
servers also provide access to HTML documents and
Java applets. Overall, the Object-Web architecture
is flexible and enables tools and applications to effec-
tively communicate with each other to build a dis-
tributed framework for Web based CAD.

4 Infrastructure for Hierarchical Web-

In this section we present an infrastructure
that enables hierarchical Web-based CAD. Any dis-
tributed application A can be sliced into different
sub-applications of the form < Al,Az, , A, >,
where each Ai can be specified in the form of
< Inputi, Processi, Outputi >, where Input, is the
set of inputs to sub-application Ai and Outputi is the
set of outputs of Ai. Processi is the set of steps (the
algorithm and the program) used to process Inputi to
produce Outputi. The input and output sets contains
elements of the form,

based-CAD

<Parameter i d e n t i f i e r > <Parameter value>
< F i l e i d e n t i f i e r > < F i l e d a t a >

It is sufficient to specify application’s input and
output in terms of parameters and files. Each Sub-
application Ai is independent in the sense no other
information other than its Input set is required to ex-
ecute the application. The division is also more of
a functional division, where each sub-application per-
forms a specific function. Although such a slicing of
interactive tools may be obvious, such a formalism
helps us design a distributed framework because each
of the independent sub-applications could be devel-
oped separately in a distributed manner and the clear
specification of the applications in terms of inputs and
outputs provides a first step to easily integrate them
in a distributed framework.

We can easily see in a distributed environment that
such an application A could be a design agent and t,he
sub-applications are distributed point tools. The de-
sign agent interacts with the designer, invoking tools
and accessing data on the designer’s behalf [4]. Such a
design agent could be a static one in which the agent
is responsible for interpretation of outputs and appro-
priately generating the inputs for the chain of sub-
applications. Or the design agent could be a dynamic
one which dynamically configures itself (in terms of
the sub applications that constitute itself).

4.1 Web based Point tools
We first present the characteristics or capabilities

of any tool in the framework and then we will go onto
how to use these features to build an efficient hiertar-
chical CAD framework accessible through the Web.

Any point tool or application on the Web can
be specified as, < Inputtool,Outputtool >, where
Inputtool is the input set and Outputtool is the out-
put set expressed in the standard form as described
in the previous section. We call this set Basic In-
terface Specification (BIS). The Inputtool can be
obtained by a CGI form or a Java based GUI. The
input is then given to the tool to be processed and
produce the Outputtool. The tool itself can be a CGI
program, linked to a HTTP address or the same Java
applet or a different Java applet, which processes trhe
input.

We propose to use the POST method and ENC-
TYPE multipart/form-data as standards for de-
scribing the BIS of Web based CAD applications.
This is because, the POST method and ENCTYI’E
multipart/form-data is capable of handling any arbi-
trary data transfer between clients and servers. Also,
the specification of the input and output sets as pa-
rameters and files can be adequately handled by the
headers of multipart/form-data. Moreover, the media-
type multipart/form-data follows the rules of all mul-

451

tipart MIME data streams, which is a standard.
Let us now consider that our back-end process-

ing is done by a CGI program which is bound to
a HTTP address like, “http://apsara.mit.edu/cgi-
bin/pythia/pythia.pl” . The input to this CGI pro-
gram can be provided by a Java applet, or a HTML
form. Both the input agents or input processes pro-
vide the data to the CGI program as multipart/form-
data and they use the POST method to talk to the
HTTP server, which would execute the CGI program.
Any tool (back-end application) should be capable of
decoding the input provided as multipart/form-data.
The application then processes the input data and pro-
duces the output in a format specified by a Output-
Type parameter in the input set of the BIS of the
tool. The OutputType parameter can take any of the
following values: HtmlType, BasicOutputType or
the URLOutputType.

If the display of the tool is intended for the user
it may have the OutputType parameter set as Html-
Type in which case the tool produces a dynamic cus-
tomized HTML page of the output. In addition to that
every tool in our framework should be able to produce
the output in multipart/form-data when the Output-
Type parameter is set as BasicOutputType. The
OutputType of URLOutputType produces a URL
which contains the output of the tool.

4.2 Hierarchical Web Tools
In this section we will show given the capabilities of

all the HTTP address bound tools, how we can build
tools which would utilize the capabilities of the exist-
ing tools and serve as a new tool in the framework.
Consider a tool X on the Web bound to the HTTP
address http://x, and another tool Y bound to the
the address http://y. Given these two tools and their
BIS we can easily construct another tool 2 bound to
http://z. Tool 2 gets its own input according to its
BIS, then process the data and produce an appropri-
ate BIS specified multipart/form-data. It then calls
the tool X and gets X ’ s output as specified in its BIS.
2 then proceeds to process the results and then calls
the tool Y . It then gets Y’s output and process all
the available data to produce its own output. To the
external world 2 acts like an independent tool which
has its own BIS. Therefore any client can make a con-
nection to http://z and get the desired output of the
tool, without being aware of the fact that 2 actually
calls two distributed tools on the Web. Figure 4 shows
the dataflow involved in such a hierarchical tool. Now
2 could be called from another CGI tool, therefore we
can build a hierarchy of tools on top of the existing
ones.

i - ” 1 ; Server

Client hrowsrr

Server

Application at 1 http://y 1

Figure 4: Data flow in the Hierarchical tools

4.3 Java and Web Tools
Java applets could be used in Web browsers in-

stead of HTML forms to enter the input data of a tool
and also do the interactive jobs mandated by many
CAD tools. The applets POST any data to the server
tools as multipart/form-data and the server tools write
back the results and data to the applets again as
multipart/form-data or a$ a simple URL, which the
applet displays in the browser.
4.4 Example of Web-based Hierarchical

In this example, we developed two point tools,
Pythia and a graph plotting utility.

Pythia: http://apsara.mit. edu/cgi-
bin/pythia/pythia.pl. This is a power estimation tool,
which takes a verilog netlist and other parameters
(Technology type, Cell models) and generates en-
ergy and power information [9]. It also generates a
data set of the current drawn and the power con-
sumed at different time intervals. In the Output
specification in the BIS of Pythia, we have pythiafile,
which is a file containing the data sets of the current
drawn versus time as a list of X and Y co-ordinates.
Pythia can be accessed from the HTML form at,
http://apsara.mit. edu/p ythia-doc/p ythia. html.

The second tool which is a graph plotting utility,
http://apsara. mat. edu/cgi- bin/graph/drawgraph.pl,
takes in a file of X,Y data sets and produces a im-
age of the plotted graph as a Jpeg image. The
tool can be accessed at: http://apsara.mit.edu/graph-
images/drawgraph. html

Now that we have these tools on the Web we make
a new tool, which takes in a verilog netlist and sim-
ulates the current drawn by the circuit. It produces
a plot of the current versus time. This tool again
is an independent tool with its own BIS, but inter-

Tool

452

http://apsara.mit.edu/cgi
http://x
http://y
http://z
http://z
http://y
http://apsara.mit
http://apsara.mit
http://apsara
http://apsara.mit.edu/graph

nally it calls Pythia to get the data set of the current
drawn by the circuit and then calls the Graph Util-
ity to plot the data set. This new hierarchical tool
can be accessed at: http://apsara.mit. edu/demol .html
and is bound to the URL http://apsara.mit.edu/cgi-
bin/demol/demolv2.pl. The flow of information is
similar to that depicted in Figure 4 where X is Pythia,
Y is Graph Utility and 2 is the new hierarchical web
tool.

5 WebTop: Distributed Microsystem

In this section we describe WebTop, a Java based
hierarchical schematic/block editor which is the entry
point of the framework. WebTop supports hierarchical
cells and multiple views of a cell. WebTop allows cells
to have a behavioral view (Verilog) or a structural view
(SPICE) in addition to the schematic views and can
be extended to have physical (layout) views. WebTop
has hierarchical netlisting capabilities for both Verilog
and SPICE.

WebTop also supports distributed cell storage and
access. Cells could be stored in different Web servers
and loaded as URLs. This directly conforms to a dis-
tributed microsystem design framework where cells
could be stored and accessed over the internet. A
Cellserver has been implemented which allows users
to store cells remotely at the server’s site using lo-
gin and password verification. Users have the ability
to access, modify and delete cells in their respective
directories. All cells saved at the server’s site are auto-
matically linked as URLs and accessible for use for all
other users. Only the owner of the cells has the per-
missions to modify or delete the cells. Figure 5 shows
a screen dump of the editor, the library manager with
the URL cell load dialog box.

WebTop uses the object-web architecture in Fig-
ure 3 for distributed tool integration. CAD tools in
the application tier can be either CGI programs, Java
objects or tools wrapped around as CORBA objects.
The standard specification of RMI and CORBA makes
it very easy to make transparent calls to tools which
communicate using RMI or CORBA. Tools can also
be CGI programs and could be integrated using the
framework described in Section 4.

WebTop has interfaces to different Web tools and
demonstrates how an Java applet tool could uti-
lize another CGI based tool on the Web. We
have developed 2 CGI based point tool Web-
Spice at http://apsara. mit. edu/cgi- bzn/spice/spice.pl,
which provides Web access to the circuit simula-
tor HSPICE. WebSpice is an independent web tool
and can be accessed through the HTML form at:

Design Center

Librarv Manager

WebTop

Distributed
Cell Libraries

Figure 5: WebTop: Hierarchical Schematic Edit.or

http://apsara.mit.edu/spice.htmE. Using WebTop, the
user can extract a design schematic into a SF’ICE
netlist. WebTop, which is an applet then submits the
netlist to WebSpice as multipart/form-data confiorm-
ing to the BIS of Webspice. WebSpice simulates the
spice netlist and sends back the results of simula,tion
to the applet as URL. The applet then displays the
resulting URL in the browser.

WebTop also interfaces to Pythia. The user ex-
tracts the design as a Verilog netlist and WebTop sub-
mits the netlist along with other parameters specified
in the BIS of Pythia as multipart/form-data. Rythia
which is a CGI program bound to a URL decodes the
input multipart/form-data from WebTop, computes
the power dissipation and produces a dynamic [JRL
containing the results as a HTML file. Pythia sends
back to WebTop the dynamic URL. WebTop then uses
the browser context to display the dynamic HTML
page.

We are currently working on interfacing WebTop to
the UC Berkeley PowerPlay and other end-tools like
MTCMOS sizing tools [SI. Work is also in progress to
integrate different CAD tools using RMI and COliBA
mechanisms. As we can see, the inter-tool communica-
tion is generic and can be used for any tool accessible
over the internet. Each server side tool could itself call
other Web tools in our hierarchical framework. Fig-
ure 6 shows the tool integration architecture of the
distributed framework.

WebTop demonstrates the feasibility of a VVeb-
based VLSI design framework. The user opens up
the hierarchical schematic editor, which is a Java ap-
plet from the Web browser. The user loads differ-

453

http://apsara.mit
http://apsara.mit.edu/cgi
http://apsara
http://apsara.mit.edu/spice.htmE

Extraaed Venl
Netlist

WebTop

Distributed Web Tools

Figure 6: WebTop: Tool Integration

ent cells from different Web servers as URLs, edits
the cell and then uses the Cellserver to store cells.
The user can then extract the design as a netlist and
then makes use of the distributed CAD tools inte-
grated with the editor in a transparent fashion. The
framework supports a plug-and-play architecture for
CAD tools which could eventually lead to a pay-per-
use model for VLSI CAD tools and cell libraries.

6 Summary
The increasing complexity of microsystem design

mandates a distributed and collaborative design envi-
ronment and the World Wide Web serves as a desir-
able platform realizing these goals. The major con-
cerns of doing CAD over the Web involves the issues
of security, standardization and network limitations.
The Web infrastructure should allow secure commu-
nications over the network. Most of the Web agent
technologies are still in the early stages of maturity
and standardization of protocols, security and com-
munication mechanisms are necessary to fully utilize
the potential of a distributed design environment. The
current networks tend to be a major bottleneck to en-
sure fast transfer of large amounts of data across the
network. However, the recent developments in high
bandwidth networks are promising in alleviating this
bottleneck in the near future. A careful mix of client
end processing and server side programming is neces-
sary to ensure fast response time.
Acknowledgments
This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA Contract

DABT63-95-C-0088). The authors would like to thank
David Liebson for his assistance in implementation of
the WebTop applet.

References
[l] D. Lidsky and J . M. Rabaey. Early Power Explo-

ration - A World Wide Web Application. Proc.
Design Automation Conf, Las Vegas, NV, pp. 27-
32, June 1996.

[2] Microsystem Design Test Bed,
http:// webnt.sainc.com/ arpa/ msdproject/
test bed. htm.

[3] The WELD Project,
http:// www-cad.eecs.berkeley.edu/ Respep/ Re-
search/ weld/.

[41 0. Bentz, D. Lidsky, and J. M. Rabaey.
Information-based Design Environment. IEEE
VLSI Signal Processing VIII, pp. 237-246, Nov
1995.

[5] A. Boglio, L. Benini, G. D. Micheli, and B. Ricco.
PPP: A Gate-level Power Estimator - A World
Wide Web Application. Stanford Technical Report

[6] N. H. Kapadia, M. S. Lundstrom, J . A. B. Fortes,
and K. Roy. Network-based Simulation Laborato-
ries for Microelectronics Systems Design and Ed-
ucation. International Conference on Microelec-
tronic Systems Education, Arlington, Virginia (in
press), July 1997.

NO. CSL-TR-96-691, 1996.

[7] H. Lavana, K. Amit, F. Brglez, and K. Kozminski.
Executable Workflows: A Paradigm for Collabo-
rative Design on the Internet. Proc. of the Design
Automation Conference, pp. 553-558, June 1997.

[8] J. Kao, A. Chandrakasan, and D. Antoniadis.
Transistor Sizing Issues and Tool for Multi-
threshold CMOS Technology. Proc. of the Design
Automation Conference, pp. 409-414, June 1997.

[9] T. Xanthopoulos, Y. Yaoi, and A. Chandrakasan.
Architectural Exploration Using Verilog-based
Power Estimation: A Case Study of the IDCT.
Proc. of the Design Automation Conference, pp.
415-420, June 1997.

[lo] OMG. The Common Object Request Broker:
Architecture and Specifications. John Wiley and
Sons, New York, 1993.

454

http://webnt.sainc.com
http://www-cad.eecs.berkeley.edu

