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Traditional methods of endpoint detection for plasma etching 
processes, where the intensity of a single spectral line from optical 
emission spectroscopy (OES) is monitored, have proven unreliable for low 
open area (<1%) etching processes such as contact and via etch.  In this 
paper we show that with the proper use of CCD-array based optical 
emission spectrometers, multi-wavelength endpoint detection can improve 
the endpoint detection sensitivity by a factor of 5-6 over the traditional 
single wavelength methods.  A quantitative method for determining 
endpoint detection sensitivities of various algorithms using signal-to-noise 
ratio is developed.  A new multi-wavelength method for “optimal” 
improvement in sensitivity is developed that uses prior knowledge of 
endpoint for improved sensitivity.  This method called the MSN statistic is 
compared and found to give superior sensitivity to other multi-wavelength 
algorithms commonly used in commercial products and to the traditional 
single wavelength method. 

Noise sources have been characterized as either uncorrelated noise 
primarily arising at the sensor or correlated process variations (drifts), 
each of which needs to be removed for sensitive endpoint detection.  The 
mechanism for removing noise is different for uncorrelated and correlated 
noise; multi-wavelength algorithms are classified according to the type of 
noise that can be removed with that algorithm.  Frequency-based filters 
(smoothing and differentiating) can also be used for removing each of 
these types of noise.  For our experimental data, the best results were 
obtained when using a high pass filter to remove signal drift (correlated 
noise) combined with the MSN statistic to remove photon shot noise 
(uncorrelated noise).  A flowchart with an overall strategy for multi-
wavelength endpoint detection for any general data set has been 
developed. 
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INTRODUCTION 

Real-time endpoint detection has been utilized since the late 1970s as a means of 
achieving better control over plasma etching processes in semiconductor manufacturing 
[1].  Nevertheless, for the critical contact and via etching steps, endpoint detection has 
been difficult to achieve, and recent work has focused on improving the sensitivity of 
endpoint detection for these low open area etches (<1%) [2-17].  In particular, the use of 
array-based optical emission spectroscopy (OES) sensors has shown promise for 
improved sensitivity, with several companies now offering multi-wavelength OES 
endpoint detection sensors. 

Many sensors have been explored for use in endpoint detection in the past twenty-five 
years.  These sensor systems include: 1) optical emission spectroscopy [4-8,10,12,16-24], 
2) mass spectrometry [9,21,22,25-27], 3) RF impedance monitoring [28,29] 4) 
reflectometry (in-situ ellipsometry, laser interferometry [30], optical emission 
interferometry [31-33], or interferometry with an external light source [34]), 5) DC bias 
or current [11] and ESC bias compensation [3], 6) thermal imaging [35], 7) absorption 
spectroscopy (tunable diode laser [15] and FTIR absorption spectroscopy).  Comparisons 
of some of these techniques are given in [22,30,36].  Many of these techniques are not 
practical in a manufacturing environment, or have limited applicability.  The primary 
sensor technology used has been optical emission spectroscopy (OES), because it is both 
non-invasive and sensitive to changes in the plasma. 

Optical emission spectroscopy (OES) has historically been used for endpoint 
detection by monitoring the emission intensity from a single wavelength corresponding to 
a product or reactant species in the plasma etcher during the etch resulting in an endpoint 
trace, like those shown in Figure 1B.  Endpoint is detected when there is some shift in the 
endpoint trace corresponding to the clearing of the film being etched to the underlying 
film or stop layer.  The emission intensity is sometimes taken as a ratio to some inert 
species emission intensity in an attempt to remove drift in the emission signal over time.  
For example, see Litvak [12].  Unfortunately, these one or two wavelength methods are 
unreliable for etching processes with a low open area fraction (<1%) on the wafer being 
etched.  With the introduction of array-based OES sensors (CCD array or diode array), 
one is no longer limited to monitoring only one or two wavelengths, and several 
companies are now offering multi-wavelength OES endpoint detection systems with the 
expectation of improved sensitivity for endpoint detection. 

Much of the recent work on endpoint detection has focused on methods for improving 
the sensitivity to endpoint detection using multi-wavelength OES [4-8,16,17,19,23,24].  
Although a number of different strategies have been proposed and/or demonstrated, there 
has been a lack of true understanding as to why these algorithms actually work or don’t 
work.  There has been little quantification of the results for improvement of endpoint 
detection sensitivity over the traditional single wavelength methods.  There has also been 
no comparison between different multi-wavelength endpoint strategies. 

This leaves many questions unanswered such as: how much improvement is possible 
with a multi-wavelength OES system and why?  What is the best multi-wavelength 
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strategy to utilize and why?  Under what conditions will a multi-wavelength strategy 
work and not work?  These are the questions that we will attempt to address in this paper. 

In the process of answering these questions, we will develop and understanding for 
the nature of multivariate noise sources in OES and how to remove these sources of 
noise.  We will develop a method to quantify the sensitivity of various endpoint detection 
strategies for comparison.  Using this method, we will develop a new multi-wavelength 
endpoint detection strategy that provides the maximum improvement in sensitivity.  We 
will compare the results of our strategy with several other strategies used in commercial 
products, revealing that our strategy gives the best improvement in sensitivity.  Finally, 
we will develop an overall strategy for multi-wavelength endpoint detection for any given 
etch process. 

This paper is a summary of the results from a thesis, which should be referred to for 
more specific details [5].  We are planning to publish several papers based on the thesis 
in the Journal of the Electrochemical Society in the near future. 

MULTI-WAVELENGTH ENDPOINT DETECTION 

Multi-wavelength OES Data 

Typical multi-wavelength OES systems use a dispersion grating to separate light that 
is collected from the plasma onto a linear CCD (or diode) array that can often have over 
1000 pixels.  The overall wavelength range of the CCD array depends on the 
spectrometer with typical ranges extending from 200 to 1000 nm, leading to a resolution 
of 5-10 Å per pixel.  Some OES systems use a grating with higher dispersion to achieve 
better resolution over a smaller wavelength range, at the expense of lower overall 
throughput of light. 

A modern CCD array spectrometer can process signals rapidly, with typical 
integration times on the order of several milliseconds possible.  Nevertheless, the light 
collection efficiency generally results in integration times that are longer (100 ms is 
typical).  Since most etching processes are a minute or two, this results in over 1000 
wavelength channels collected for over 1000 time samples, as depicted in Figure 1A.  
The goal of a multi-wavelength endpoint detection algorithm is to extract a couple of 
pieces of information (beginning, middle, and end of endpoint), from over one million 
data points.  This is often done by first combining the wavelength data together to form a 
single multi-wavelength parameter or statistic that can be monitored over time and forms 
an endpoint trace similar to the traditional single wavelength endpoint traces. 

There are many ways in which the multi-wavelength data can be visualized.  The 
time-dependent multi-wavelength data view is a way to visualize the evolution of the 
spectra over time as shown in Figure 1A.  Looking at the data for different wavelength 
channel results in a series of endpoint traces that correspond to different chemical species 
from the plasma, as seen in Figure 1B.  One can see from this figure that a number of 
different wavelength channels have signal changes at endpoint.  In fact, due to the highly 
coupled nature of the plasma, the majority of the wavelength signals from a typical 
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process exhibit a change at endpoint that can be used to improve the sensitivity to 
endpoint.  Another way to view the data is to look at different time slices of the data, 
which results in a snapshot spectrum view of the data, as shown in Figure 1C.  The 
snapshot spectrum represents a fingerprint of the plasma chemistry at any given point in 
time, and is useful for identifying specific chemical species in the plasma.  Unfortunately, 
none of these views of the data gives any intuition about how to combine the data 
together in a way that will enhance the sensitivity of endpoint.  For this we need a 
different way of depicting the data – by using a multivariate parameter space view. 
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Figure 1.  (A) Plot of time dependent multi-wavelength spectral data, with over 1000 discrete 
wavelength channels from 300-900 nm, collecting data at a rate of 10 Hz, leading to over 1000 time 
samples for a typical etch.  (B) Each wavelength channel gives a unique endpoint trace, from which 
endpoint may or may not be detected.  (C)  During each time slice, a snapshot spectrum reveals the 
nature of the emission process at that given time.  Unfortunately, none of these views is particularly 
useful in terms of creating an algorithm for combining the data together for endpoint detection; for 

this, we need a multivariate parameter space view, depicted in Figure 2. 

The multivariate parameter space view of the OES data plots each snapshot spectrum 
as a single time point in a multi-dimensional space, where each axis is the intensity of a 
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particular wavelength channel.  This means that if there are 1024 wavelength channels, 
then the data is plotted in a 1024-dimensional space, which is pretty hard for us to 
picture.  Nevertheless, a lot of intuition can be gained by looking at a more simplified 
three dimensional example, as shown in Figure 2, and extending our intuition out to the 
higher-dimensional cases. 
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Figure 2.  Multivariate Parameter Space view of optical emission spectroscopy (OES) data has a 

unique dimension for every wavelength channel, which in this example is limited to three dimensions, 
but in practice will result in a parameter space with over 1000 dimensions.  The wavelength spectrum 
at each time sample are plotted as single data points in the multi-dimensional space.  In general, the 

data points tend to cluster in some region in this space during the main etch, and upon clearing to the 
underlying film, the data points shift to some other region in the multivariate space.  We can draw a 

hyper-ellipse to bound the main etch and post-endpoint data, which can be used to define when 
endpoint has occurred. 

In this example, we have eight time samples and three wavelength channels.  The first 
four time samples correspond to data during the main etch and the last four time samples 
correspond to the data after endpoint.  The data points during the main etch and after 
endpoint tend to cluster in different regions in the three-dimensional space.  These 
regions can be bounded hyper-ellipses which can be used to detect when endpoint has 
occurred, i.e. when a point falls outside of the main etch hyper-ellipse, this indicates that 
endpoint has started. 

Now what remains is to map this multi-dimensional picture to a single multi-
wavelength parameter, e.g. a linear combination of the wavelengths is one simple way to 
combine the variables.  In fact, there are a number of different mappings that we can use, 
and this is what separates the different multi-wavelength strategies that are available.  
These strategies are discussed next. 

Multivariate Algorithms 

Broadly speaking, we can classify multivariate algorithms into one of two categories, 
which are easily envisioned using the multivariate parameter space view as depicted in 
Figure 3.  The first category looks for a mean shift in the data between the main etch and 



 6

endpoint data.  The second looks for changes in the variance structure or noise in the 
data, i.e. a covariance shift, between the main etch and endpoint data – this covariance 
shift can be due to either rotation or stretching and expanding of the hyper-ellipse 
bounding the data from each subset.  In Figure 3, we have summarized a number of 
multivariate algorithms that are commonly available and classified them according to 
each of these categories.  In our work, we focus mostly on mean shift algorithms, since 
they are generally more sensitive [5].  Commercial multi-wavelength OES systems utilize 
principal component analysis (PCA), Hotelling’s T2, evolving window factor analysis 
(EWFA) or some combination of them to achieve endpoint, so these will be compared 
against the single wavelength methods later in the paper.  Application of Hotelling’s T2 to 
endpoint detection is described in Le [23] revealing qualitative improvements in endpoint 
detection sensitivity.  The use of T2 statistics based on principal component analysis 
(PCA) scores along with Q-statistic residuals is demonstrated in White et al. 
demonstrating difficulties associated with “drift” noise in endpoint traces as well as 
qualitative improvements in endpoint detection sensitivity.  Yue et al. [16] describe the 
use of individual PC scores for endpoint detection with the advantage of removing much 
of the drift by not using the first principal component, with some qualitative advantages 
demonstrated.  Hosch et al. [4] describe the use of a neural network based PCA approach 
with qualitative demonstration of low open area endpoint detection sensitivity.  Branagh 
et al. [24] describe the use of evolving window factor analysis (EWFA) for endpoint 
detection to capture changes in the variance of the data.  Chen [19] describes many of the 
other covariance shift algorithms with application to endpoint detection. 

In our work, we have developed a new way of combining the endpoint data together 
using a new statistic called the MSN statistic and described as a nearly equivalent method 
using discriminant analysis [5,7].  Both of these algorithms use prior knowledge of the 
direction of endpoint in the multivariate parameter space to enhance the endpoint 
detection sensitivity.  Similar methods are now being developed by [17] as well.   

Duane Boning
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Figure 3.  Multivariate endpoint detection algorithms can be classified according to the type of shift 

that one is trying to observe, either a shift in the position of the mean of the data or a shift in the 
covariance structure of the data by either rotation or stretching of the hyper-ellipse bounding the 
data.  The focus of this paper is on mean shift algorithms, although we do compare one commonly 

used covariance shift algorithm called evolving window factor analysis (EWFA) in this paper.  Some 
commercial products rely on T2 or PCA, while others are based on EWFA.  The MSN statistic and 

linear discriminant methodologies are proposed in this paper as superior alternatives for multi-
wavelength endpoint detection. 

Quantifying Endpoint Sensitivity 

With different multi-wavelength algorithms available, some method is required to 
compare the endpoint detection sensitivity quantitatively.  To quantify endpoint detection 
sensitivity, we developed a simple method, which calculates the signal-to-noise ratio 
(SNR) for an endpoint trace by dividing the change in signal intensity at endpoint by the 
standard deviation of the noise during the main etch.  This method is depicted in Figure 4, 
for a single wavelength endpoint trace.  The signal-to-noise ratio calculation can be used 
for single wavelength traces as well as for most multi-wavelength endpoint traces. 
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Figure 4.  Quantification of endpoint sensitivity.  To quantify endpoint detection sensitivity, we 

calculate a signal to noise ratio, by taking the change in the signal intensity at endpoint and dividing 
by the standard deviation of the noise during the main etch.  This same methodology can be applied 
to single wavelength endpoint traces, and most multi-wavelength endpoint traces, provided that they 

were formed by linear combinations of the incoming wavelength channels. 
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Once the SNR metric has been defined, we can define an objective for multi-
wavelength OES clearly: 

Objective of multi-wavelength endpoint detection: To maximize the 
endpoint signal-to-noise ratio 

  We can also use the SNR to look at the data in an important way; the SNR can be 
calculated for each of the wavelength channels and a SNR spectrum can be plotted to 
reveal which wavelengths are useful for endpoint and which wavelengths are not.  The 
SNR spectrum are plotted in Figure 5 for OES data collected during the etching of three 
different open area fractions of polysilicon using a Cl2/HBr chemistry.  These spectrum 
reveal that there is a large variation in the SNRs for different wavelength channels as 
expected, and that the SNR spectra roughly scale as the fraction of open area decreases.  
If one wished to determine the optimum single wavelength with the highest endpoint 
detection sensitivity, one would use the 656.2 nm line corresponding to an α-H emission 
peak, since it has the highest SNR. 
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Figure 5.  SNR spectra for 3 different levels of open area during polysilicon etching with HBr/Cl2 

reveal which wavelengths are useful for endpoint detection.  Notice that the SNR spectra have similar 
characteristics for the 3 open area fractions, but not identical.  The SNR spectra scale approximately 

with the open area fraction as we would expect.  The largest single wavelength SNR is for the α-H 
peak at 656.2 nm, with a SNR that decreases from 150 for the blanket polysilicon film down to less 

than 3 for the 0.5% open area wafer. 

The SNR can also be used in a more powerful way; we can use it to create an optimal 
weighting of wavelength channels to maximize the SNR improvement.  This is explored 
in the next section. 

OPTIMAL MULTI-WAVELENGTH STRATEGY 

Now that an objective has been defined to achieve maximum improvement in SNR, 
we can determine an optimal multi-wavelength strategy given certain assumptions.  The 
first assumption we make is that the noise in the different wavelength channels are 
statistically independent of one another.  This assumption will hold true if photon shot 
noise is dominant; multivariate noise sources will be discussed later.  The second 
assumption requires the multi-wavelength parameter to be formed as some linear 
combination of the different wavelength variables. 
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Following these assumptions, consider the following two wavelength variable 
example where the second wavelength (x1) has an endpoint change r times that of the 
first wavelength (x2) and the variables have been scaled to have noise during the main 
etch with unit variance: 

Variable Noise Change at Endpoint 
x1 N(0,1) ∆1 
x2 N(0,1) ∆2=r ∆1      0<r<1 
y=a1x1+a2x2 N(0,a1

2+a2
2) (a1+ra2) ∆1 

where y is an arbitrary linear combination of the two variables, with constants a1 and a2.  
If we arbitrarily restrict a1+a2=1, then we can calculate the general formula for SNRy, the 
multi-wavelength signal-to-noise ratio as: 

 1 1
12 2

1 1

[ (1 ) ]

(2 2 1)
y

a r r
SNR

a a

− + ∆=
− +

 (1) 

We then take the derivative of this equation with respect to the weighting a1 and set it 
equal to zero to find the best value of a1, which is found to be: 

 1

1

1
a

r
=

+
 (2) 

Plugging into a2 and finding the ratio to a1 reveals that: 

 2 1a ra=  (3) 

In other words, the optimum weighting of variables requires scaling them by their signal 
to noise ratios.  Geometrically speaking this is easy to see as shown in Figure 6; the best 
direction in which to search is the direction in which the change is occurring.  Extending 
the picture out to n dimensions, we still expect that the optimum signal to noise is 
obtainable by looking in the direction of the actual signal change.  A sub-optimal case 
such as the projection to only one of the variables will always result in lower signal to 
noise. 
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Figure 6.  Optimal search direction for a 2-D case which maximizes SNR occurs in the direction that 
the change occurs.  Any other direction requires a projection of the endpoint change that results in a 

lower SNR. 

On the basis of this observation, we define a new metric called the MSN or Multivariable 
statistic weighted by the Signal to Noise ratio to be a weighted sum of the signal changes 
at endpoint where the weightings are based on the SNR of the individual components.   
The MSN statistic is given by: 

 ( )
1

n
j j

MSN j
j j

SNR
σ=

−
= ∑ x x

y  (4) 

where j is the wavelength variable index for the n different wavelengths collected by the 
spectrometer, xj are the raw signal endpoint traces which are mean-centered and scaled to 
unit variance with the mean and standard deviation during the main etch.  These scaled 
signals are then weighted by their SNR’s before summing them together into the MSN 
statistic.  It is important to note that this form of the MSN statistic assumes that the noise 
is statistically independent from one wavelength to the next.  This form of the MSN 
statistic is called the MSN with no rotation or MSN_NR for short. 

The theoretical SNR for the MSN statistic is given by: 

 ( )
,

2

MSN theoreticaly j
j

SNR SNR= ∑  (5) 

which is always greater than the largest single wavelength SNR.  If all of the single 
wavelength SNRs are equal, the improvement over the single wavelength signal SNR is 

maximum and equal to n where n is the number of single wavelength channels.  If there 
is only one wavelength with a signal change at endpoint, then there is no improvement in 
SNR for the multivariate signal. 

Pictorially, we can represent the MSN_NR statistic as shown in Figure 7, as 
consisting of a scaling to unit variance and projecting onto the optimal direction. 
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Figure 7.  Pictorial Representation of MSN statistic as applied to uncorrelated data (MSN_NR) in 2 

dimensions.  The endpoint data are mean centered and scaled to unit variance.  The data is then 
projected in the optimal direction, towards the direction of the mean shift at endpoint.  The MSN 

statistic data are the projections onto this direction. 

MSN statistic with rotation – MSN_R 

It is possible to also formulate an MSN statistic that is used with noise that is not 
statistically independent, i.e. noise that is correlated from one wavelength to the next.  In 
such a case, the original data set is rotated to create a statistically independent set of 
directions, from which the MSN statistic is calculated.  This form of the MSN statistic is 
called MSN with rotation or MSN_R for short.  To better understand the algorithm with 
rotation, see Figure 7, which pictorially represents an example with only two 
wavelengths.  The original data set is highly correlated during the main etch, and can be 
bounded by an ellipse as shown.  The major and minor axes of the ellipse represent a new 
basis set of directions in which the data is not correlated.  The data is rotated to this new 
basis set and then is scaled to unit variance in all directions.  Finally the data is projected 
onto the endpoint direction, which gives the MSN statistic. 
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Figure 8.  Pictorial representation of MSN statistic as applied to correlated data (MSN_R) in 2 

dimensions.  The data is first rotated to a statistically independent basis set.  The data is then scaled 
to unit variance, before projecting the data onto the direction pointing to endpoint (mean of 

overetch).  The projections onto this direction are the MSN statistic data.   

MSN statistic same as linear discriminant (MLR_DA) 

We have found that the MSN statistic with rotation is nearly equivalent to using a 
Fischer linear discriminant [37], so we will briefly describe the linear discriminant 
methodology as well.  The application of linear discriminant analysis to endpoint 
detection is depicted in Figure 9.  The discriminant is found by regressing the data onto 
an ideal endpoint trace and using the regression coefficients as weights for a linear 
combination of the individual wavelength channels.  The discriminant analysis provides a 
way to maximize the ability to discriminate between two distinct classes, which in our 
case are the data before and after endpoint.  For the endpoint data we have used multiple 
linear regression (MLR), also known as ordinary least squares (OLS), for the regression 
calculation, and hence the abbreviation MLR_DA.  If the data are collinear, partial least 
squares (PLS), principal components regression (PCR), or ridge regression (RR) can 
alternatively be used for the discriminant analysis.  In this paper we focus on the results 
using only MLR_DA. 
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Figure 9.  Linear discriminant analysis (MLR_DA) applied to endpoint detection.  The data matrix of 

the OES data is regressed against an ideal endpoint trace, with the resulting regression coefficients 
(the discriminant) giving the weighting for the linear combination of wavelengths that best 

discriminates between the main etch and over-etch data.  MLR_DA gives similar results to the MSN 
statistic with rotation (MSN_R). 

Using Prior Knowledge of Endpoint 

In the development of the MSN statistic, we show that projecting along the endpoint 
direction, i.e. weighting by the SNRs, gives the best endpoint detection sensitivity.  For 
real-time implementation of the MSN statistic, we must calculate the direction of 
endpoint from some prior wafer(s) and presume that the direction of endpoint will be the 
same for the current wafer, i.e. prior knowledge of endpoint must be known for the MSN 
statistic to be applied.  This of course requires that the direction of the endpoint change 
does not vary much from wafer to wafer, which we assume to be the case provided the 
etching chemistry and wafers being processed are the same from one wafer to the next.   

By effectively using the prior knowledge of endpoint, we can limit the space (out of 
the entire multivariate parameter space) in which we look for endpoint, thus enhancing 
our sensitivity to endpoint.  Algorithms such as Hotelling’s T2, do not use prior 
knowledge, and therefore require us to use the entire multivariate parameter space to 
search for faults, which decreases the inherent sensitivity of the algorithm.  In some of 
our previous work, we showed that by using a subset of the multivariate space by 
projecting the data onto only a few principal component directions, which are then 
combined to form T2, we can enhance the sensitivity towards detecting endpoint [8].  Yue 
et al. have shown that using principal component analysis (PCA) where endpoint is 
included in training also helps to reduce the space to a subset where endpoint is more 
likely to appear [16], and picking only select principal components and wavelengths can 
further enhance the sensitivity.  The MSN statistic provides a means to use the prior 
knowledge of endpoint in the optimal way to reduce the space one has to search for 
endpoint to achieve the highest endpoint detection sensitivity.    
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NOISE IN MULTI-WAVELENGTH OES 

In developing the optimal multi-wavelength statistic we made some assumptions 
regarding the nature of the noise.  In this section we will look at various noise sources 
that commonly arise in multi-wavelength OES systems, and characterize the noise into 
one of two categories: 1) uncorrelated noise – noise that is independent from one 
wavelength channel to the next, and 2) correlated noise – noise that is similar from one 
wavelength channel to the next.  We will show that the ability to remove the noise source 
using a multivariate algorithm is different depending on which category of noise is most 
dominant. 

Uncorrelated Noise – Sensor noise 

Noise sources occurring in a CCD array spectrometer have been characterized [5,38] 
and consist of the following:  

1) Photon shot noise – noise arising from quantum detection of photons 
2) Dark current and noise – spontaneous photoelectron generation in the absence of 

photons 
3) Readout noise – Arising from electronic processing of signal, not a problem for 

high quality CCD array. 
4) Thermal drift – Variations in the dark current and noise due to heating of 

detector.  This is removable by thermoelectric cooling. 
5) Pixel shift and drift – Change in the location of the pixel as a function of time, 

possibly due to subtle mechanical vibrations. 

Of these noise sources, the readout noise, thermal drift, and pixel shift and drift can 
be significantly reduced by proper design of the CCD array.  This leaves photon shot 
noise and dark noise as the primary sources of sensor noise.  Shot noise is the most 
dominant noise source, but dark noise becomes more significant for weaker signals.  The 
magnitude of the dark current and noise can be significantly reduced by thermoelectric 
cooling. 

Since photon shot noise is the most dominant sensor noise, we will now focus on it.  
The quantum detection of photoelectrons is a Poissonian process, resulting in noise that is 
proportional to the square root of the signal intensity.  More specifically, the number of 
photoelectrons detected on any given pixel of the CCD array over a given amount of time 
(integration time) is poisson-distributed, such that the mean value and variance of the 
number of photoelectrons detected are equivalent and can be approximated by a normal 
distribution centered at the mean.  Further, the shot noise that arises in each pixel of the 
CCD array will be independent from the shot noise in the neighboring pixel (ignoring for 
quantum tunneling, pixel shift, and other sources of cross-talk between adjacent pixels).  
This type of noise that is independent from one wavelength to the next is called 
uncorrelated noise.  The origin of uncorrelated noise from the OES sensor is illustrated in 
Figure 10. 
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Figure 10.  Noise arising at the CCD array sensor is usually dominated by photon shot noise, which is 

proportional to the square root of the signal intensity.  This type of noise independently affects the 
signal strength for different wavelengths, and therefore it is uncorrelated noise. 

Now that the uncorrelated noise has been characterized, it is important to understand 
how to remove this source of noise.  It is well known that adding together signals with 
equal noise results in a reduction of the noise by the square root of the number of signals 
for uncorrelated or independent noise sources.  This reduction in noise comes as a result 
of partial cancellation of the noise, hence we will call the mechanism to remove 
uncorrelated noise, noise reduction. 

 
Figure 11.  Demonstration of noise reduction of uncorrelated noise.  For two endpoint signals (x,y) 

with uncorrelated noise, but similar changes at endpoint, the noise is removed by summing the 
signals together to get a partial cancellation of the uncorrelated noise.  In the multivariate parameter 

space, the optimal improvement is achieved by projection along the endpoint direction, as is done 
with the MSN statistic. 

In the left side of Figure 11, we show an example of two wavelength channels (x and 
y) with identical signal changes at endpoint and uncorrelated noise.  Noise reduction is 
achieved by the addition of the two channels resulting in z, which has an improvement in 
signal to noise by the square root of two.  If n such signals are added together, this would 



 16

result in an improvement by n .  Unfortunately, the signal change at endpoint relative to 
the noise, i.e. the endpoint SNRs, are generally not of equal magnitude for the different 

wavelengths, so the improvement is often much less than the by n , where n the number 
of wavelength channels collected by the CCD array.  In fact the maximum improvement 
is found by applying the MSN statistic to the data. 

The right side of Figure 11 shows how the signal is improved in the multivariate 
parameter space view, by projecting the data along the direction of the signal change. 

Correlated Noise – Process variations 

We have seen how sources of noise that arise in the OES sensor system result in 
uncorrelated noise, but what about sources of noise that arise within the plasma etching 
system?  Process noise can arise from a number of variations in the process including: 

1) Variations in the input parameters such as power, pressure, flow rate, etc. 
2) Variations in the chamber conditions – temperature of walls, deposition on walls, 

deposition or sputter of glass to reduce the transmission. 
3) Normal process variation – rotating magnetic field resulting in oscillatory 

behavior of plasma at a certain frequency. 
4) Reflections from wafer – interferometry effect [39]. 
5) Exposed area at edge of wafer – wafer edge effect [39]. 

Ultimately, these sources of variation, will lead to changes in the plasma including 
changes in the plasma density, plasma temperature, and plasma chemistry.  These 
changes in turn result in changes in emission spectra that are highly correlated, that is the 
intensity of various signals tend to go up and down in a similar fashion.  As a result, this 
type of variation is called correlated noise; the evolution of which is shown in Figure 12. 

Process Variation
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Figure 12.  Variations in the plasma etcher lead to variations in the plasma, which in turn causes the 
signal strengths for many wavelengths to be affected in a similar manner.  Since the variation is the 

same for many wavelengths, this is called correlated noise. 
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The removal of correlated noise is accomplished by different means than the noise 
reduction that was used to remove the uncorrelated noise.  Since the noise is correlated, 
adding the noise together does not result in a partial cancellation of the noise.  In fact for 
a two signal example where the noise is perfectly correlated as shown in Figure 13, the 
noise can be completely removed by subtracting the signals, and the resulting signal will 
have an infinite improvement in signal to noise.  The right side of Figure 13 depicts the 
signals in the multivariate parameter space, revealing that the correlated noise 
(disturbance) falls along a given direction in that space, and can therefore be rejected 
along that direction.  Hence we term this method for removing correlated noise, 
disturbance rejection.  By looking in a direction orthogonal to this direction, infinite 
signal to noise is obtainable.  For multi-wavelength signals with over 1000 wavelengths 
(resulting in 1000 dimensions in the multivariate parameter space), the noise may be 
correlated along many directions and must be rejected along each. 

 
Figure 13.  For two endpoint signals (x,y) that have perfectly correlated noise, the correlated noise or 
disturbance can be rejected by subtracting the two signals.  In the multivariate parameter space 
view, the noise is rejected along a particular direction (z1).  By projecting along the direction 
orthogonal to z1, namely z2, infinite SNR is possible.  For data that is not perfectly correlated the 
improvement in SNR is not infinite and is limited by the relative orientation of the endpoint direction 
and the correlated disturbance direction. 

In practice, one will never obtain signals that are perfectly correlated, and hence one 
can only hope to reject as much of the correlated disturbance as possible.  Further, the 
shift at endpoint will often be in a similar direction(s) in the multivariate space as the 
disturbance, such that the disturbance cannot be rejected without simultaneously 
removing the endpoint signal.  For example, see the signal in Figure 14; we will show 
how frequency-based filters can be used to remove correlated noise in certain cases 
where disturbance rejection is ineffective. 

Frequency-based filters for noise removal 

We have shown that multivariate algorithms can be used for disturbance rejection, but 
there is another, perhaps more effective means to reject correlated disturbances for many 



 18

endpoint signals, by using frequency-based filters.  To illustrate how this is 
accomplished, consider the example signals shown in Figure 14, in which two signals x 
and y are drifting over time during the main etch.  The resulting signal in the multivariate 
parameter space reveals a high degree of cross-correlation.  Unfortunately, in this 
example (as is often the case with experimental data), the endpoint signal change aligns 
closely with the disturbance, so that the disturbance cannot be rejected effectively.  If we 
apply a high pass filter to this data for each of the signals, however, then the disturbance 
is removed and the residual data is uncorrelated, as shown in the right side of Figure 14.  
Such an approach will only work if the time scale (frequency) for the endpoint change is 
different than the time scale (frequency) for the drift.  Since the drift has a low frequency, 
a high pass filter (derivative filter) is effective at removing the drift.  Similarly, a low 
pass filter (box moving average) can be used to remove high frequency shot noise if the 
endpoint signal change occurs slowly over time.  As a result frequency-based filters can 
be used to remove both uncorrelated and correlated noise sources.  One must be careful, 
however, in the application of these filters so as not to remove the endpoint signal change 
that we are trying to detect. 

 
Figure 14.  Frequency based disturbance rejection.  Left: Two signals with low frequency drift as the 

dominant noise.  Bottom plot shows that disturbance rejection by rotation is not effective for this 
data because the endpoint signal is in the same direction as the disturbance.  Right: Application of 
high pass filter (derivative) to the data on the left results in rejection of the correlated drift noise 

resulting in a signal having noise that is uncorrelated. 

The use of time-series analysis applied to endpoint data is a more simplified statistical 
approach that is often used to remove the non-stationary, or drifting behavior of signals 
by modeling them as auto-regressive integrative moving average (ARIMA) processes 
[40].  Statistical limits can then placed on the residuals, as demonstrated for tool fault 
detection in Spanos et al. [41], to look for endpoint.  Unfortunately, the statistical time-
series modeling approach does not take into consideration the nature of the signal that 
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one is trying to detect, but instead focuses on creating a non-drifting (stationary) signal 
first and then looking for faults second.  This can lead to the removal of the fault 
(endpoint change) when modeling the drifting signal, by applying what is effectively a 
high frequency filter that is too aggressive.  As a result, the author suggests using the 
frequency-based signal processing approach that was described in the previous 
paragraph, with the primary goal of minimizing the correlated drift noise without 
substantially affecting the endpoint signal. 

Comparison of multi-wavelength methods 

Now that we have determined that noise can be characterized into two separate 
categories – uncorrelated and correlated noise – it is useful to classify multivariate 
endpoint detection algorithms according to the action they perform on the data set.  For 
example, the MSN statistic without rotation only reduces the uncorrelated shot noise 
component of data by noise reduction.  The Hotelling T2 statistic applies a rotation to try 
to reject disturbances, but does not benefit from any noise reduction in the uncorrelated 
noise.  The MSN statistic with rotation applies a rotation to reject disturbances and also 
benefits from noise reduction along the rotated directions.  Discriminant analysis also 
utilizes both noise reduction and disturbance rejection.  Principal component analysis 
(PCA) generally provides the rotation to reject disturbances if only the main etch data is 
used for calculating the principal components (PCA_ME), but can provide both 
disturbance rejection and noise reduction if the endpoint data is also included in 
calculating the principal components (PCA_EP) depending on the circumstances.  The 
EWFA algorithm does not utilize either of these types of noise rejection, but instead 
relies on a second order effect of new variance directions arising.  The multivariate 
algorithms that are compared in this paper and their mechanism for improvement over 
single wavelength signals are summarized in Table 1, along with abbreviations that are 
used throughout the paper for each algorithm. 

Multivariate Algorithm (abbrev.) Mechanism for improvement / 
Noise Removal 

Prior knowledge 
of endpoint 

Hotelling’s T2 (T2) Disturbance rejection only No 
MSN with no rotation (MSN_NR) Noise reduction only Yes 
MSN with rotation (MSN_R) Disturbance rejection and noise 

reduction 
Yes 

Discriminant Analysis (MLR_DA) Disturbance rejection and noise 
reduction 

Yes 

Principal Component Analysis – 
main etch data only (PCA_ME) 

Disturbance rejection No 

Principal Component Analysis – 
main etch and endpoint data 
(PCA_EP) 

Noise reduction for large endpoint 
changes 
Disturbance rejection for small 
endpoint changes 

Yes 

Evolving Window Factor Analysis 
(EWFA) 

Origin of new variance direction 
(2nd order effect) 

No 

Table 1.  Comparison of multivariate endpoint algorithms by mechanism for improvement / noise 
reduction and whether prior knowledge of endpoint is used to enhance the sensitivity. 
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We have also described how the MSN statistic uses prior knowledge of endpoint to 
improve its endpoint detection sensitivity.  We can characterize each of the various 
multivariate algorithms according to whether or not prior knowledge of endpoint is used.  
This is also shown in Table 1. 

By examining Table 1, one might conclude that the MSN with rotation and 
discriminant analysis approaches should provide the best ability to reduce the noise in the 
multivariate data, provided that the endpoint direction can be adequately predicted from 
prior wafer data.  In the next section, each of these multivariate algorithms will be 
applied to a set of experimental data and compared for endpoint detection sensitivity.   

EXPERIMENTAL 

Etch experiments were performed in an inductively coupled plasma etcher, shown in 
Figure 15.  RF power is supplied at 13.56 MHz with a Comdel CPS-500A power supply 
to generate the plasma, with plasma densities of around 1010 cm3 and plasma 
temperatures of around 2-3 eV for typical operating conditions.  Ions are accelerated to 
the wafer which sits on a bottom electrode and is biased negatively relative to the plasma 
by an independent rf bias power supply, a Comdel CX-2000, operated at 4 MHz, to avoid 
crosstalk with the top power supply.  Impedance matching networks are used to couple 
maximum power to the plasma for both the top and bottom power supplies. 
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Figure 15.  Inductively coupled plasma etcher with full wafer interferometry (FWI) and optical 

emission spectroscopy (OES) diagnostics. 

The wafers used in this reactor are four inches in diameter and are clamped to the 
bottom electrode with a mechanical clamp that applies a force of 10 lbs. to the outer 3/8” 
perimeter of the wafer.  Backside helium pressure of 10-20 torr is used to help cool the 
wafer during processing; the bottom electrode is water-cooled at 15°C.  Wafer 
temperatures during processing are typically around 60°C, and undergo a rise in 
temperature of around 45°C during the first 10-20 seconds of processing. 

Gas is fed to the chamber through a main feedthrough at the side of the chamber near 
the top.  The chamber is pumped by a Leybold TMP 361C turbopump backed by a Roots 
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blower in-line with a mechanical pump to facilitate larger gas flow rates.  The pressure in 
the chamber is controlled by a VAT adaptive pressure control valve. 

The etching process used in this study is the etching of polysilicon with HBr and Cl2 
gases.  HBr and Cl2 is the primary chemistry used in industry for polysilicon etching, and 
the process has been studied extensively in the literature.  The nominal operating 
conditions including the polysilicon film properties are given in Table 2. 
 

Parameter Nominal operation 
Top power (W) 300 
Bottom power (W) 50 
Total flow rate (sccm) 60 
HBr:Cl2 2:1 
Chamber pressure (mtorr) 20 
He backside cooling (torr) 15-20 
Polysilicon etch rate (Å/min) 3500 
Polysilicon thickness (Å) 5000 
Oxide stop layer thickness (Å) 1000 
Oxide etch rate (Å/min) <100 

Table 2.  Nominal operating conditions for HBr and Cl2 etching of polysilicon endpoint experiments 

The etch rate for this chemistry was typically 3500 Å/minute for the low open area 
wafers, but for the blanket wafers, a substantial loading effect was observed that drops 
the etch rate to around 2500 Å/min.  For 5000Å thick polysilicon, this led to endpoint 
clearing times of around 1-2 minutes in duration. 

Low open area samples were prepared by mounting smaller polysilicon wafer 
samples, of a specified size, to blanket oxide wafers with silver paint.  The silver paint 
ensured that the samples were well adhered and had good thermal contact to the wafer.  
The sample sizes that were used, along with the polysilicon area and area fraction, are 
given in Table 3. 
 

Sample Polysilicon area (cm2) Polysilicon open area (%) 
Blanket 8.29 100% 
5% open area 0.41 5% 
0.5% open area 0.04 0.5% 

Table 3.  Sample sizes for polysilicon with open area fractions indicated.  5% and 0.5% open area 
samples are mounted onto blanket oxide wafers. 

For each of the three open area levels, ten consecutive wafers were processed and 
optical emission spectroscopy and FWI data were collected.  The OES data were 
collected using a Jarrell-Ash Monospec 27 monochromator with a Hamamatsu S7031-
1007 CCD array detector mounted at the exit focal plane of the monochromator.  The 
Jarrell Ash Monospec 27 monochromator has a focal length of 275 nm, with an f/3.8, and 
an entrance slit that 25 µm wide.  The spectrometer is configured in a crossed Czerny-
Turner configuration, with a holographic grating having 150 grooves/mm, 24 nm/mm 
dispersion, and a 590 nm wavelength range from 310-900 nm.  The resolution with this 
grating was typically around 2 nm, when used with the Hamamatsu CCD array detector.  
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The Hamamatsu S7031-1007 is a 2D CCD array detector that is back-thinned and 
consists of 1024x58 pixels; the active area of the CCD is ~25 mm x 3 mm.  Full-well 
capacity of this CCD array is 600,000 electrons when operating in line-binning mode, 
which is used to reduce the data to a 1D array of 1024 channels.  The CCD was 
thermoelectrically cooled to -10°C to minimize dark current and thermal drift.  A 
National Instruments AT-AI-16XE-10 DAQ board was used to control the CCD array 
and collect the data.  The A/D conversion was 16 bit and was done at clock speeds of 500 
kHz.  Integration times of 5 ms to 10 seconds were possible with this detector, but OES 
data were collected at a rate of 10 Hz during the etch.  FWI data were collected 
simultaneously using an LES-1200 system to validate the endpoint time. 

Data Pre-treatment 

So that calculations were easier, only one-quarter of the original set of 1024 
wavelength channels were kept for analysis; this was accomplished by keeping only 
every fourth wavelength channel for each run, leaving only 256 wavelength channels for 
analysis.  The raw data were then processed using frequency filtering in the form of 
simple box moving averages and derivatives to generate data that was dominated by 
either a low frequency correlated drift, or by high frequency shot noise.  The specific 
treatments that were used are summarized in Table 4. 

 
Case Box Moving Average 

Width (seconds) 
Derivative 
Width (seconds) 

Correlated Noise – drift limited 1 N/A 
Uncorrelated Noise – shot noise limited 1 2 

Table 4.  Smoothing and derivative parameters 

Multivariate Endpoint Implementation 

After pretreatment of the data, the multivariate algorithms listed in Table 1 were 
applied to the data.  The first wafer for each open area level was used to “train” for the 
covariance of the main etch data for the Hotelling’s T2, the first five principal component 
directions for both of the PCA analyses (PCA_ME and PCA_EP), and the endpoint 
change direction and regression coefficients for the MSN statistics (MSN_NR and 
MSN_R) and linear discriminant analysis (MLR_DA).  Data from the remaining nine 
wafers were then used as “test” samples which were projected onto the covariance 
matrix, principal component directions, and projection directions, to calculate the 
corresponding multivariate endpoint traces for each algorithm.  See Yue et al. [16] and 
Goodlin [5] for details on PCA implementation and Le [23] and White et al. for details on 
T2 implementation.  For the EWFA algorithm, no training wafers are required; the first 
five singular values are calculated using a window width of five seconds for each wafer.  
See Branagh et al. for implementation of EWFA to endpoint.  Each of the 1024 
wavelengths collected was also individually considered for endpoint detection. 

After creating all of the single wavelength and multi-wavelength endpoint traces, 
signal-to-noise ratios (SNRs) were calculated for each algorithm (except Hotelling’s T2) 
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for each of the 9 test wafers at each of the three open area levels.  The mean and standard 
deviation of the SNRs were then tabulated for the three open area levels for each 
algorithm.  For the PCA and EWFA algorithms, only the principal component or singular 
value with the best SNR is retained in the results for each algorithm.  For the single 
wavelengths, only the best single wavelength SNR is retained for comparison.  For 
Hotelling’s T2, the SNR calculation could not be computed properly, but analysis of the 
qualitative results (described elsewhere in Goodlin [5]) indicates that Hotelling’s T2 
generally has no better endpoint detection sensitivity than the best single wavelength 
result. 

RESULTS 

Quantitative Results – Drift limited noise 
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Figure 16.  Bar plots showing the Mean and Standard Deviation of the SNRs calculated  for the 

100% and 5% open area wafers.  The multi-wavelength methods developed in this paper (MSN_R, 
MSN_NR, and MLR_DA) improve the sensitivity over the single wavelength result by a factor of 2 to 

3 for the best method (MSN_R).  These methods also outperform the other multi-wavelength 
methods that are often used in commercial products.  The Hotelling’s T2 result is not shown, since its 
SNR cannot be properly calculated.  For all methods, The SNR decreases between 10 and 20 times in 

going from the 100% open area results to the 5% open area results. 

The results from the SNR calculation for the drift limited case are shown in Figure 16 
for the 100% and 5% open area fractions.  The 0.5% open area results were not tabulated 
because the drift limitation led to an erroneous calculation of the SNR for the 0.5% open 
area results.  On this figure we have indicated the traditional single wavelength method, 
the multi-wavelength methods developed in this paper (MSN_NR, MSN_R, and 
MLR_DA) and other multi-wavelength methods commonly used in commercial products 
(PCA_ME, PCA_EP, and EWFA).  As mentioned in the experimental section, the T2 
results could not be displayed, but have been shown to have less sensitivity to endpoint 
than the multi-wavelength methods developed in this paper [6]. 
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The results indicate that for drift limited noise, the multi-wavelength methods 
developed in this work outperform both the traditional method for endpoint detection and 
the multi-wavelength methods used in other products.  The MSN_R algorithm provides 
the best result with a factor of 2-3 improvement in SNR over the best single wavelength.  
Somewhat surprisingly, the other multi-wavelength methods have less sensitivity to 
endpoint than the best single wavelength result.  However, the methods described in this 
paper have a large standard deviation of the SNR (see Figure 16), indicating that the 
disturbance rejection is not robust, and these techniques will not be able to provide 
sensitive endpoint detection without retraining the data often.  Looking at the 5% open 
area wafer results, we can see that the EWFA algorithm does not provide improved 
sensitivity over the single wavelength result, but may lead to a more robust endpoint 
signal for drift limited OES data, as demonstrated by a low standard deviation of the SNR 
relative to the mean value. 
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Quantitative Results – Shot Limited Noise 
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Figure 17.  Bar plots showing the Mean and Standard Deviation of the SNR calculated for wafers 2-

10 for the 3 levels of open area wafers (100%, 5%, 0.5%).  The MSN_NR clearly gives the best results 
for endpoint detection sensitivity for the 0.5% open area wafers.  For larger open areas, linear 

discriminant (MLR_DA2) and MSN_R give the best result.  SNR improvements of between 2 and 3 
are gained in going from the best single wavelength result to optimum multi-wavelength result.  The 
SNR decreases between 50 and 200 times in going from the 100% open area results to the 0.5% open 

area results, which is dependent on the nature of the noise at each open area fraction.  Robustness 
issues will be discussed in the text. 

The results from the SNR calculation for the shot noise limited derivative case are 
plotted in Figure 17 for the 100%, 5%, and 0.5% open area fraction results.  Recall that in 
this case, the drift has been removed by frequency filtering, so that only uncorrelated shot 
noise remains.  The results indicate that for shot limited noise (uncorrelated noise), the 
multi-wavelength methods developed in this paper again outperform the single 
wavelength method by a signal to noise ratio of 2 to 3.  The other multi-wavelength 
methods are again less sensitive to endpoint than the best single wavelength method.   In 
this case, the standard deviations of the SNR for the multi-wavelength methods are 
smaller relative to the mean values of the SNRs than in the drift limited case.  This 
indicates that these algorithms are more robust after the frequency filtering has removed 
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the drift.  In this case, the EWFA does not provide a more robust method of endpoint 
detection than the single wavelength method. 

For the lowest open area case (0.5%), the results indicate that only the MSN_NR or 
MSN statistic without rotation provides sensitive endpoint detection with a SNR greater 
than 3.  The reason the MSN_NR provides the best result in this case is due to the nature 
of the training of the endpoint direction for the 0.5% open area wafers.  For these wafers, 
the 5% open area wafers are used for training in determining the endpoint direction for 
the MSN_R, MSN_NR and MLR_DA algorithms, because the SNRs for the individual 
wavelengths are much larger and therefore the certainty in the weighting of the 
wavelength variables (which is by the SNR) is much higher.  This assumes that the SNRs 
will scale approximately linearly with open area fraction, resulting in a similar direction 
for endpoint for the 5% and 0.5% open area wafers.  However, for the MSN_R and 
MLR_DA algorithms, a rotation is also applied, which requires the covariance of the 5% 
and 0.5% wafers to be similar.  In fact the covariance of these open area levels does 
change so that training on the 5% open area wafers is not effective, except in the case 
where only the SNRs are scaled.  The MSN_NR, however, can only reduce uncorrelated 
noise and has no ability to reject disturbances, so this method is only effective if the data 
is dominated by uncorrelated noise.  This requires that the frequency filter used to 
remove the drift must be effective, otherwise the MSN_NR will be limited by any drift or 
other correlated noise that remains. 

Results using Optimal Strategy 

 
Figure 18.  Comparison of best single wavelength endpoint detection endpoint traces to the optimum 

multi-wavelength strategy for 0.5% open area wafers, when utilizing the entire 1024 wavelength 
channels available from the CCD array spectrometer.  Endpoint is not detectable for the best single 

wavelength, while it is easily detectable using the optimum multi-wavelength methodology.  This 
methodology provides an improvement in SNR of 5.3. 

Based on the results from the previous section, we have shown that the strategy for 
achieving the best endpoint detection sensitivity utilized a combination of a bandpass 
filter to remove the correlated noise (drift), together with the MSN statistic without 
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rotation to provide maximum noise reduction of the uncorrelated shot noise.  In the 
previous section, however, only one-quarter of the available wavelengths were used, so 
the maximum potential of this strategy was not realized.  Here, we apply this strategy to 
the entire set of 1024 wavelengths and demonstrate the results.  The results are shown 
qualitatively for the 0.5% open area wafers in Figure 18, revealing a substantial 
improvement in the ability to detect endpoint for the multi-wavelength methodology over 
the best single wavelength endpoint trace.  Quantitatively the improvement in SNR is 
calculated to be 5.3. 

OVERALL STRATEGY FOR MULTI-WAVELENGTH ENDPOINT 
DETECTION 

We have shown for this specific etch example how one can improve endpoint 
detection sensitivity by a factor of 5-6.  For a more general etch process, the amount of 
improvement that can be obtained will depend on both the nature of the plasma and the 
sources of noise that are most prevalent in that particular etch process and OES sensor 
system.  One can characterize the nature of the noise as being uncorrelated or correlated 
and then apply frequency filtering combined with multivariate endpoint detection to 
remove these noise sources accordingly.  We have developed a flow chart for 
determining how to achieve the optimal multi-wavelength endpoint detection depending 
on which noise source is most dominant as shown in Figure 19.  We would expect that 
for many etching processes improvements in endpoint detection sensitivity using multi-
wavelength analysis should be similar to that demonstrated in this paper. 

Multivariate Endpoint Data
With Mean Shift

Correlated Noise
Un-correlated Noise

(shot noise)

Disturbance Rejection
by Linear Discriminant

Analysis

Frequency Filter (high pass)

Noise Reduction
by MSN (no rotation)

Endpoint 
sensitivity 
limited by:
1) Shot noise
2) Signal 
reduction by 
frequency filter

Endpoint 
sensitivity 
limited by:
1) Shot noise
2) Projection of 
correlated 
noise

Endpoint Robustness 
limited by:
1) Change in direction 
of endpoint
2) Change in 
covariance structure

Endpoint Robustness 
limited by:
1) Change in direction 
of endpoint

 
Figure 19.  Summary of endpoint detection results / scheme for optimally detecting endpoint. 

CONCLUSIONS 

In this paper, we have demonstrated how multi-wavelength endpoint detection can be 
used to improve the sensitivity of endpoint detection over traditional methods by a factor 
of 5-6 using a quantitative signal-to-noise ratio for determining the sensitivity.  Such an 
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improvement is obtainable when properly combining together frequency filtering and an 
optimal multi-wavelength statistic that uses prior knowledge of endpoint to enhance the 
detection sensitivity.  Understanding the nature of the noise sources is key to proper 
implementation of both frequency filters and multi-wavelength strategies. 

Multivariate noise sources have been characterized as either correlated noise which 
arises from variations in the process or uncorrelated noise which arises in the OES sensor 
system.  These two noise sources are fundamentally different and must be removed by 
different mechanisms: namely, disturbance rejection to remove correlated noise and noise 
reduction to remove uncorrelated noise.  The ability of multi-wavelength algorithms to 
improve the endpoint detection sensitivity depends heavily on the ability to remove these 
various noise sources.  We have characterized several of the commonly used algorithms 
according to their ability to remove both uncorrelated and correlated noise, revealing that 
the MSN statistic developed in this work and the discriminant analysis approach, first 
described in this work, provide the only means to remove both noise sources.  
Nevertheless, frequency filters can be used to remove both correlated and uncorrelated 
noise as well, and can be used in conjunction with multi-wavelength strategies to enhance 
the overall sensitivity to endpoint detection. 

Several strategies for endpoint were compared and the methods developed in this 
paper proved superior to both the single wavelength traditional method for endpoint 
detection and other multi-wavelength strategies suggested in the literature and used in 
commercial products.  In fact, several other methods, such as Hotelling’s T2, EWFA, and 
PCA based methods often provided worse sensitivity to endpoint detection than the 
traditional method with a single wavelength, provided that the best single wavelength is 
chosen.  For our experimental data, the dominant noise sources were a slow drift, 
correlated noise associated with heating of the reactor wall during the etching process and 
photon shot noise (uncorrelated noise) at the detector.  The best result was obtained when 
using a high-pass filter to remove the drift combined with the MSN statistic without 
rotation to optimally remove the noise by using prior knowledge of endpoint obtained 
from a training wafer.  This resulted in the improvement by a factor of 5-6.  In a general 
plasma process, one must carefully consider the dominant noise sources that are present 
and then appropriately apply the multi-wavelength strategy according to the flowchart 
given in Figure 19.  We believe that similar improvements in endpoint detection 
sensitivity can be obtained for most plasma processes, if the algorithms are applied 
properly. 
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