{"id":3835,"date":"2011-07-13T16:10:53","date_gmt":"2011-07-13T16:10:53","guid":{"rendered":"https:\/\/mtlsites.mit.edu\/annual_reports\/2011\/?p=3835"},"modified":"2011-07-25T17:58:35","modified_gmt":"2011-07-25T17:58:35","slug":"roger-kamm","status":"publish","type":"post","link":"https:\/\/mtlsites.mit.edu\/annual_reports\/2011\/roger-kamm\/","title":{"rendered":"Roger Kamm"},"content":{"rendered":"
Vera RH, Genov\u00e9 E, Alvarez L, Borr\u00f3s S, Kamm R, Lauffenburger D, Semino CE. Interstitial Fluid Flow Intensity Modulates Endothelial Sprouting in Restricted Src-Activated Cell Clusters During Capillary Morphogenesis. Tissue Eng Part A. 2008 Jul 17.<\/p>\n
Chung S, Lee JH, Moon M-W, Han J, Kamm RD. Non-lithographic wrinkle nanochannels for protein preconcentration. Adv Mater. 2008, 20:3011-3016.<\/p>\n
Das SK, Chung S, Zervantonakis I, Atnafu J, Kamm RD. A microfluidic platform for studying the effects of small temperature gradients in incubator environment. Biomicrofluidics, 2008, 2, 03106.<\/p>\n
Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Lab Chip, 2009, 9(2):269-75.<\/p>\n
Mack PJ, Zhang Y, Chung S, Vickerman V, Kamm RD, Garcia-Cardena G. Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J Biol Chem. 2009, 284(13):8412-8420.<\/p>\n
Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J, 2009, 23(7):2155-64.<\/p>\n
Chung S, Yun H and Kamm RD. Nanointerstice-driven microflow. Small, 2009, 5(5) 609-13.DOI: 10.1002\/smll.200800748.<\/p>\n
Chung S, Sudo R, Zervantonakis I, Rimchala T, Kamm RD. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. (Cover Article) Adv Mat, 21: 1-5, 2009. DOI: 10.1002\/adma.2009001727<\/p>\n
Wood LB, Das A, Kamm RD, Asada HH. A stochastic broadcast feedback approach to regulating cell population morphology for microfluidic angiogenesis platforms.<\/a> IEEE Trans Biomed Eng. 2009 Sep;56(9):2299-303. Epub 2009 Jul 17.<\/p>\n Mofrad MR, Kamm RD, eds.\u00a0 Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues<\/em>, Cambridge University Press, 2009.<\/p>\n Chung S, Sudo S, Vickerman V, Zervantonakis IK, Kamm RD. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell\u2013Cell Interactions, Annals Biomed Engineering, 2010, DOI: 10.1007\/s10439-010-9899-3<\/p>\n Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. Concentration gradients in microfluidic 3D matrix cell culture systems. Intern J Micro-Nano Scale Transport, 1(1): 27-36, 2010.<\/p>\n Lee H, Ferrer JM, Nakamura F, Lang MJ, Kamm RD. Passive and active microrheology for cross-linked F-actin networks in vitro. \u00a0Acta Biomater. 2010 Apr;6(4):1207-1218. Epub 2009 Oct 31<\/p>\n Amadi OC, Steinhauser ML, Nishi Y, Chung S, Kamm RD, McMahon AP, Lee RT. A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment.<\/a> Biomed Microdevices. 2010 Dec;12(6):1027-41. PubMed PMID: 20661647.<\/p>\n Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. A high-throughput microfluidic assay to study neurite response to growth factor gradients.<\/a> Lab Chip. 2011 Feb 7;11(3):497-507. Epub 2010 Nov 25. PubMed PMID: 21107471.<\/p>\n Wan CR, Chung S, Kamm RD. Differentiation of Embryonic Stem Cells into Cardiomyocytes in a Compliant Microfluidic System.<\/a> Ann Biomed Eng. 2011 Feb 19. [Epub ahead of print] PubMed PMID: 21336802.<\/p>\n Honarmandi P, Lee H, Lang MJ, Kamm RD. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment.<\/a> Lab Chip. 2011 Feb 21;11(4):684-94. Epub 2010 Dec 8. PubMed PMID: 21152510.<\/p>\n