{"id":392,"date":"2010-06-23T11:08:57","date_gmt":"2010-06-23T15:08:57","guid":{"rendered":"https:\/\/wpmu2.mit.local\/?p=392"},"modified":"2010-06-23T11:08:57","modified_gmt":"2010-06-23T15:08:57","slug":"mark-l-schattenburg","status":"publish","type":"post","link":"https:\/\/wpmu2.mit.local\/mark-l-schattenburg\/","title":{"rendered":"Mark L. Schattenburg"},"content":{"rendered":"
\u201cHigh fidelity blazed grating replication using nanoimprint lithography,\u201d C.-H. Chang, J.C. Montoya, M. Akilian, A. Lapsa, R.K. Heilmann, M.L. Schattenburg, M. Li, K.A. Flanagan, A.P. Rasmussen, J.F. Seely, J.M. Laming, B. Kjornrattanawanich and L.I. Goray, J. Vac. Sci. Technol. B<\/em> 22<\/strong>, 3260- 3264 (2004).<\/p>\n \u201cDoppler writing and linewidth control for scanning beam interference lithography,\u201d<\/strong> <\/strong>J. Montoya, C.-H. Chang, R.K. Heilmann and M.L. Schattenburg, J. Vac. Sci. Technol. B<\/em> 23<\/strong>, 2640-2645 (2005).<\/p>\n \u201cDescribing isotropic and anisotropic out-of-plane deformations in thin cubic materials using Zernike polynomials,\u201d C.-H. Chang, M. Akilian and M.L. Schattenburg, Applied Optics<\/em> 45<\/strong>, 432-437 (2006).<\/p>\n \u201cNear-normal-incidence extreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazed grating,\u201d M.P. Kowalski, R.K. Heilmann, M.L. Schattenburg, C.-H. Chang, F.B. Berendse and W.R. Hunter, Applied Optics<\/em> 45<\/strong>, 1676-1679 (2006).<\/p>\n \u201cEfficiency of a grazing-incidence off-plane grating in the soft x-ray region,\u201d J.F. Seely, <\/sup>L.I. Goray, B. Kjornrattanawanich, J.M. Laming, G.E. Holland, K.A. Flanagan, R.K. Heilmann, C.-H. Chang, M.L. Schattenburg and A.P. Rasmussen, Applied Optics<\/em> 45<\/strong>, 1680-1687 (2006).<\/p>\n \u201cPhase control in multiexposure spatial frequency multiplication,\u201d Y. Zhao, C.-H. Chang, R.K. Heilmann and M.L. Schattenburg, J. Vac. Sci. Technol. B <\/em>25<\/strong>, 2439-2443 (2007).<\/p>\n \u201cFabrication of ultrahigh aspect ratio freestanding gratings on silicon-on-insulator wafers,\u201d M. Ahn, R.K. Heilmann and M. L. Schattenburg, J. Vac. Sci. Technol. B<\/em> 25<\/strong>, 2593-2597 (2007).<\/p>\n \u201cSpectrometer concept and design for x-ray astronomy using a blazed transmission grating,\u201d K. Flanagan, M. Ahn, J. Davis, R. Heilmann, D. Huenemoerder, A. Levine, H. Marshall, G. Prigozhin, A. Rasmussen, G. Ricker, M. Schattenburg, N. Schulz and Y. Zhao, Proc. SPIE<\/em> 6686<\/strong>, Optics for EUV, X-Ray, and Gamma-Ray Astronomy III<\/em>, eds. S.L. O\u2019Dell and G. Pareschi, pp. 66880Y-1-12 (2007).<\/p>\n \u201cDesign of a double-pass shear mode acousto-optical modulator,\u201d C.-H. Chang, R.K. Heilmann, M.L. Schattenburg and P. Glenn, Rev. Sci. Instr.<\/em> 79<\/strong>, pp. 033104-1-5 (2008).<\/p>\n \u201cFabrication of 50 nm-period gratings with multilevel interference lithography,\u201d C.-H. Chang, Y. Zhao, R.K. Heilmann and M.L. Schattenburg, Opt. Lett<\/em>. 33,<\/strong> 1572-1574 (2008).<\/p>\n \u201cFabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,\u201d M. Ahn, R.K. Heilmann and M.L. Schattenburg, J. Vac. Sci. Technol. B<\/em> 26<\/strong>, 2179-2182 (2008).<\/p>\n \u201cSpatial-frequency multiplication with multilayer interference lithography,\u201d C.-H. Chang, Y. Zhao, R.K. Heilmann and M.L. Schattenburg, J. Vac. Sci. Technol. B<\/em> 26<\/strong>, 2135-2138 (2008).<\/p>\n \u201c5000 groove\/mm multilayer-coated blazed grating with 33% efficiency in the 3rd order in the EUV wavelength range,\u201d D.L. Voronov, E.H. Anderson, R. Cambie, F. Salmassi, E.M. Gullikson, V.V. Yashchuk, H.A. Padmore, M. Ahn, C. Chang, R.K. Heilmann and M.L. Schattenburg, in Advances in X-Ray\/EUV Optics and Components IV<\/em>, edited by A.M. Khounsary, C. Morawe, S. Goto, Proc. SPIE 7448 (SPIE, Bellingham, WA) 74480J-1-11 (2009).<\/p>\n \u201cOptimization and temperature mapping of an ultra-high thermal stability environmental enclosure,\u201d Y. Zhao, D.L. Trumper, R.K. Heilmann and M.L. Schattenburg, J. Precision Engineering<\/em> 34,<\/strong> 164\u2013170 (2010).<\/p>\n<\/div>","protected":false},"excerpt":{"rendered":" Advanced lithography, including x-ray, electron-beam, ion-beam, and optical. Nanotechnology and nanofabrication. Precision engineering and nano-accuracy dimensional metrology. Advanced interference lithography technology for high-accuracy patterning of general grating and grid patterns. Micro and nanometer fabrication technology applied to advanced astronomical and laboratory instrumentation. Silicon micromachined structures applied to high-precision optical assembly. X-ray optics and instrumentation.<\/p>\n<\/div>","protected":false},"author":2,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":[],"categories":[80],"tags":[43,66],"_links":{"self":[{"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/posts\/392"}],"collection":[{"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/comments?post=392"}],"version-history":[{"count":0,"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/posts\/392\/revisions"}],"wp:attachment":[{"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/media?parent=392"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/categories?post=392"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/wpmu2.mit.local\/wp-json\/wp\/v2\/tags?post=392"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}