Experimental Investigation of Carrier Velocity and Mobility in Deeply Scaled MOSFETs

Personnel

A. Lochtefeld and A. Khakifirooz (D. A. Antoniadis)

Sponsorship

DARPA

In this work we investigate the physical meaning of different MOSFET carrier velocity extraction methods, in order to measure appropriately how close to the thermal limit a modern MOSFET operates. It turns out that modern devices are operating at less than 50% of the ballistic limit.

There is a motivation to employ strained-Si and SiGe materials to enhance the mobility. However, the relationship between low-field effective mobility (μ_{eff}) and high-field carrier velocity is not well understood for deep-sub-100 nm MOSFETs. We have investigated this experimentally by mechanically inducing uniaxial strain, via a four-point bending apparatus, on devices with effective channel length down to 40 nm. Experimental results show that for both N- and P-type devices the ratio of the change in the velocity to the change in the mobility caused by mechanical strain is about 50-60% in deeply scaled devices.