Electron Inversion Layer Mobility in Strained-Si *n*-MOSFETs with High Channel Doping Concentration Achieved by Ion Implantation

Personnel

H. M. Nayfeh, C. W. Leitz, and A. J. Pitera (J. L. Hoyt, E. A. Fitzgerald, and D. A. Antoniadis)

Sponsorship

SRC

Inversion layer mobility measurements in strained-Si *n*-MOSFETs fabricated using a typical MOSFET process including high temperature steps and with various channel doping concentrations, achieved by boron ion implantation, are compared with co-processed bulk-Si *n*-MOSFETs. It is found that a near-universal mobility relationship with vertical effective electric field, E_{eff} , exists for strained-Si and bulk-Si *n*-MOSFETs for all channel implant doses in this study. Significant mobility enhancement for E_{eff} up to 2 MV/cm (1.5-1.7 x) is obtained for channel doping concentrations ranging from 10^{17} -6x 10^{18} cm⁻³.

Long-channel *n*-MOSFET devices were fabricated and measured with various ion implant doses in strained-Si and bulk-Si (unstrained) channels. The devices were fabricated using a typical MOSFET process including high temperature steps of gate oxidation and reoxidation at 800° C and a 1000° C spike anneal for source/drain and polysilicon-gate doping activation. Electron mobility measurements on $50 \times 50 \ \mu m^2$ *n*-MOSFETs with oxide thickness of 5 nm were extracted for boron ion implant concentrations in the range 10^{17} -6x10¹⁸ cm⁻³ as shown in Figure 42. Significant mobility enhancement for all channel doping concentrations for the entire E_{eff} range measured (1.5-1.7 x) are observed. Furthermore, a near-universal mobility relationship with E_{eff} is found. The conclusion from this study is that strained-Si n-MOSFETs, with channel doping concentration required to meet the off-current requirement for the ITRS 40 nm technology node (L_{gate} =28 nm), can be fabricated with little if any loss of low-field mobility enhancement using conventional MOSFET processes with ion-implanted channels and high temperature steps.

Fig. 42: Effective electron mobility in strained-Si and bulk-Si n-MOSFETs vs. effective vertical electric field, $E_{\rm eff}$ for varying channel doping concentrations.