
Chapter 7

Processes

The model of a communication system that we have been developing is shown in Figure 7.1, where the
source is assumed to emit a stream of symbols. The channel may be a physical channel between different
points in space, or it may be a memory which stores information for retrieval at a later time, or it may be a
computation in which the information is processed in some way.

So
ur

ce
E

nc
od

er

C
om

pr
es

so
r

C
ha

nn
el

E
nc

od
er

C
ha

nn
el

C
ha

nn
el

D
ec

od
er

E
xp

an
de

r

So
ur

ce
D

ec
od

er

- - - - - - - -Input Output

(Symbols) (Symbols)

Figure 7.1: Elaborate communication system

In this chapter we present an abstract model that is general enough to represent each of these boxes,
and define for such a model the input information, output information, information loss, noise, and mutual
information. Formulas bounding the noise and loss of two such boxes connected together are presented.

Because each of these boxes processes information in some way, it is called a processor and what it does
is called a process. The processes we consider here are

• Discrete: The inputs are selected from a discrete set of mutually exclusive possibilities; only one of
which occurs at a time. The output is one of another discrete set of mutually exclusive values.

• Finite: The set of possible inputs is finite. Similarly, the output is one of another finite set of values.

• Memoryless: The process acts on the input at some time and produces an output based on that
input and not on any prior inputs.

• Nondeterministic: The process may produce different outputs when it is presented with the same
input again (the model is also valid for deterministic processes). We will see below that nondeterministic
processes introduce noise.

Author: Paul Penfield, Jr.
Version 1.1.0, March 26, 2004. Copyright c© 2004 Massachusetts Institute of Technology
URL: http://www-mtl.mit.edu/Courses/6.050/notes/chapter7.pdf

start: http://www-mtl.mit.edu/Courses/6.050/notes/index.html

back: http://www-mtl.mit.edu/Courses/6.050/notes/chapter6.pdf
next: http://www-mtl.mit.edu/Courses/6.050/notes/chapter8.pdf

65

http://mtlsites.mit.edu/Courses/6.050/notes/chapter7.pdf
http://mtlsites.mit.edu/Courses/6.050/notes/index.html
http://mtlsites.mit.edu/Courses/6.050/notes/chapter6.pdf
http://mtlsites.mit.edu/Courses/6.050/notes/chapter8.pdf


7.1 Process Model 66

• Nontransparent: It may not be possible to “see” the input from the output, i.e., determine the input
state by observing the output state (the model is also valid for transparent processes). We will use the
term “lossy” to describe non-transparent processes because knowledge about the input is lost by the
time the output is created.

It is useful to represent processes by boxes with inputs and outputs, that an be connected together. One
way of doing that is shown above, in Figure 7.1. Another way is useful if the processor is made of electronic
parts. Then the input and output may exist physically as one or more wires, with, for example, a high
voltage representing logical 1 and a low voltage logical 0. A diagram using these physical wires is called a
circuit diagram. For example, the circuit diagram of an AND gate is shown in Figure 7.5.

Figure 7.2: Circuit diagram of an AND gate

Another process model (one we will emphasize here) shows the set of all possible input states and
output states. For example, a two-input one-output gate would have four input possibilities and two output
possibilities, as show in Figure 7.3.

-

-

-

- -

-00

01

10

11

0

1

Figure 7.3: Process model of a two-input one-output gate.

Note that the number of possible bit patterns is greater than the number of physical wires connected to a
gate; each wire could have two possible states, and so for n-input gates there would be 2n input states. The
process model for an AND gate is shown later.

Still another representation is introduced below, in which the information transmitted to and from the
process is shown explicitly.

7.1 Process Model

A process that can have n inputs and m outputs, where n and m are integers, is shown in Figure 7.4. The
n input states are mutually exclusive, as are the m output states.

This model for processes is conceptually simple and general. However, it can be difficult to use for
practical calculation. The reason for this is that the inputs and outputs are represented in terms of mutually
exclusive sets of events. If the events describe signals on, say, five wires, each of which can carry a high or low
voltage signifying a boolean 1 or 0, there would be 32 possible events. It is much easier to draw a logic gate
with five inputs representing physical variables, than a discrete process with 32 inputs. This “exponential
explosion” of the number of possible input states gets even more severe when the process represents the



7.1 Process Model 67

-

-

..
.

-

-

-

-

..
.

-

-

n inputs m outputs

Figure 7.4: Process Model

evolution of the state of a physical system with a large number of atoms. For example, the number of
molecules in a mole of gas is Avogadro’s number NA = 6.02 × 1023. If each atom had just one associated
boolean variable, there would be 2 raised to that number of states. To put all this in perspective, the number
of microseconds since the big bang is thought to be less than 5× 1023.

We assume that each possible input state of a process can lead to one or more of the output states. For
each input i denote the probability that this input leads to the output j as cji. These parameters can be
thought of as a table, or matrix, with as many columns as there are input states, and as many rows as output
states. We will use i as an index over the input states and j over the output states, and we will denote the
event associated with the selection of input i as Ai and the event associated with output j as Bj .

The “transition parameters” cji are properties of the process, not properties of whatever drives the pro-
cess, i.e., whatever inputs are provided to the process. Thus in one sense these parameters are probabilities,
but they do not depend on the probability distribution of the input p(Ai). Therefore we are denoting them
with a letter other than p.

The transition parameters lie between 0 and 1 and, for each i their sum over the output index j is 1,
since for each possible input event exactly one output event is selected.

0 ≤ cji ≤ 1 (7.1)

1 =
∑

j

cji (7.2)

Note that this description has great generality. It applies to a deterministic process, for which the output
is determined by the input (although it may not be the most convenient to use). For such a process, each
column of the cji matrix contains one element that is 1 and all the other elements are 0. It also applies
to a channel with noise. It applies to the source encoder and decoder, to the compressor and expander,
and to the channel encoder and decoder. It applies to logic gates and to devices which perform arbitrary
memoryless computation (sometimes called “combinational logic” in distinction to “sequential logic” which
can involve prior states). It even applies to transitions taken by a physical system from one of its states to
the next (although usually in this case the number of possible states is so large that this representation is
impractical). It applies whether the number of output states is greater than the number of input states (for
example channel encoders) or less (for example channel decoders).

If a process input is determined by random events Ai with probability distribution p(Ai) then the various
other probabilities can be calculated. In particular, the conditional output probabilities, conditioned on the
input, are

p(Bj | Ai) = cji (7.3)

The unconditional probability of each output p(Bj) is

p(Bj) =
∑

i

cjip(Ai) (7.4)



7.1 Process Model 68

Finally, the joint probability of each input with each output p(Ai, Bj) and the backward conditional proba-
bilities p(Ai | Bj) can be found using Bayes’ Theorem:

p(Ai, Bj) = p(Bj)p(Ai | Bj) (7.5)
= p(Ai)p(Bj | Ai) (7.6)
= p(Ai)cji (7.7)

7.1.1 Example: AND Gate

The AND gate is deterministic (it has no noise) but is lossy, because knowledge of the output is not sufficient
to infer the input. The transition matrix is[

c0(00) c0(01) c0(10) c0(11)

c1(00) c1(01) c1(10) c1(11)

]
=
[

1 1 1 0
0 0 0 1

]
(7.8)

The process model for this gate is shown in Figure 7.5.

-

-

-

- -

--

��������:

���
�����*

-

00

01

10

11

0

1

Figure 7.5: Process model of an AND gate

7.1.2 Example: Binary Channel

Consider a noiseless binary channel which, when presented with one of two possible input values 0 or 1,
transmits this value faithfully to its output. This is a very simple example of a discrete memoryless process.
We represent this channel by a process model with two inputs and two outputs. To indicate the fact that
the input is replicated faithfully at the output, the inner workings of the box are revealed in the form of two
paths, one from each input to the corresponding output. See Figure 7.6.

The transition matrix for this channel is[
c00 c01

c10 c11

]
=
[

1 0
0 1

]
(7.9)

The input information Iin for this process is 1 bit if the two values are equally likely; more generally

Iin = p(A0) log2

(
1

p(A0)

)
+ p(A1) log2

(
1

p(A1)

)
(7.10)

The output information Iout has a similar formula, using the output probabilities p(Bj). Since the input
and output are the same in this case, it is possible to infer the input when the output has been observed.
The amount of information out is the same as the amount in: Iout = Iin. This noiseless channel is effective
for its intended purpose, which is to permit the receiver, at the output, to infer the value at the input.

Next, let us suppose that this channel occasionally makes errors. Thus if the input is 1 the output is not
always 1, but with the “bit error probability” ε is flipped to the “wrong” value 0, and hence is “correct”



7.2 Information, Loss, and Noise 69

-

-

-

-

-

-(1)

(1)

i=0

i=1

j=0

j=1

(a) (b)

-

-

-

-

-

-

�
�

�
�

�
�>Z

Z
Z

Z
Z

Z~

(1− ε)

(1− ε)

(ε)

(ε)

i=0

i=1

j=0

j=1

Figure 7.6: (a) Binary channel without errors (b) Symmetric binary channel with errors

only with probability 1 − ε. Similarly, for the input of 0, the probability of error is ε. Then the transition
matrix is [

c00 c01

c10 c11

]
=
[

1− ε ε
ε 1− ε

]
(7.11)

This model, with random behavior, is sometimes called the Symmetric Binary Channel (SBC), symmetric
in the sense that the errors in the two directions (from 0 to 1 and vice versa) are equally likely. This channel
is pictured in Figure 7.6(b), with two paths leaving from each input, and two paths converging on each
output.

Clearly the errors in the SBC introduce some uncertainty into the output over and above the uncertainty
that is present in the input signal. Intuitively, we can say that noise has been added, so that the output is
composed in part of desired signal and in part of noise. Or we can say that some of our information is lost
in the channel. Both of these effects have happened, but as we will see they are not always related; we will
see examples of other processes that introduce noise but have no loss, and vice versa.

Loss of information happens because it is no longer possible to tell with certainty what the input signal
is, after the output is observed. Loss shows up in drawings like Figure 7.6 where two or more paths converge
on the same output. Noise happens because the output is not determined precisely by the input. Noise
shows up in drawings like Figure 7.6 where two or more paths diverge from the same input. Despite noise
and loss, however, some information can be transmitted from the input to the output (i.e., observation of
the output can allow one to make some inferences about the input).

We now return to our model of a general discrete memoryless nondeterministic lossy process, and derive
formulas for noise, loss, and information transfer (which will be called “mutual information”). We will then
come back to the symmetric binary channel and interpret these formulas.

7.2 Information, Loss, and Noise

For the general discrete memoryless process, useful measures of the amount of information presented at the
input and the amount transmitted to the output can be defined. We suppose the process state is represented
by random events Ai with probability distribution p(Ai). The information at the input Iin is the same as
the entropy of this source.

Iin =
∑

i

p(Ai) log2

(
1

p(Ai)

)
(7.12)

This is the amount of uncertainty we have about the input if we do not know what it is, or before it has
been selected by the source.

A similar formula applies at the output. Thus, expressing the result in terms of the input probability
distribution and the channel transition matrix,



7.2 Information, Loss, and Noise 70

Iout =
∑

j

p(Bj) log2

(
1

p(Bj)

)

=
∑

j

(∑
i

cjip(Ai)

)
log2

(
1∑

i cjip(Ai)

)
(7.13)

This measure of information at the output, however, does not refer to the identity of the input state, but
rather the output state. It represents our uncertainty about the output state before we discover what it is.
If our objective is to determine the input, Iout is not relevant. Instead, we should ask about the uncertainty
of our knowledge of the input state. This can be expressed from the vantage point of the output by asking
about the uncertainty of the input state given one particular output state, and then averaging over those
states. This uncertainty, for each j, is given by a formula like those above but using the reverse conditional
probabilities p(Ai | Bj) ∑

i

p(Ai | Bj) log2

(
1

p(Ai | Bj)

)
(7.14)

Then the average uncertainty is found by computing the average over the output probability distribution,
i.e., by multiplying by p(Bj) and summing over j

L =
∑

j

p(Bj)
∑

i

p(Ai | Bj) log2

(
1

p(Ai | Bj)

)

=
∑
ij

p(Ai, Bj) log2

(
1

p(Ai | Bj)

)
(7.15)

Note that the second formula uses the joint probability distribution p(Ai, Bj). We have denoted this
average uncertainty by L and will call it “loss.” This term is appropriate because it is the amount of
information about the input that is not able to be determined by examining the output state, and so got
“lost” in the transition from input to output. In the special case that the process allows the input state to
be identified uniquely for each possible output state, the process is “lossless” and, as would be expected,
L = 0.

It is easy to demonstrate that L ≤ Iin or, in words, that the uncertainty after learning the output is
less than (or perhaps equal to) the uncertainty before. To prove this, use the Gibbs inequality, covered in
Chapter 5: ∑

i

pi log2

(
1
pi

)
≤
∑

i

pi log2

(
1
p′

i

)
(7.16)

where pi and p′
i are any two probability distributions. We use p(Ai | Bj) for pi and p(Ai) for p′

i. Then we
multiply the result by p(Bj) and sum over j. The left side is then just L and with help from Bayes’ Theorem
the right side evaluates to



7.2 Information, Loss, and Noise 71

∑
j

p(Bj)
∑

i

p(Ai | Bj) log2

(
1

p(Ai)

)
=

∑
ji

p(Bj)p(Ai | Bj) log2

(
1

p(Ai)

)

=
∑
ji

p(Ai, Bj) log2

(
1

p(Ai)

)

=
∑
ij

p(Bj | Ai)p(Ai) log2

(
1

p(Ai)

)

=
∑

i

p(Ai) log2

(
1

p(Ai)

)
= Iin (7.17)

The amount of information we learn about the input state upon being told the output state is our
uncertainty before being told, which is Iin, less our uncertainty after being told, which is L. We have just
shown that this amount cannot be negative, since L ≤ Iin. Let us denote the amount we have learned
as M = Iin − L, and call this the “mutual information” between input and output. This is an important
quantity because it is the amount of information that gets through the process.

To recapitulate the relations among these information quantities:

Iin =
∑

i

p(Ai) log2

(
1

p(Ai)

)
(7.18)

L =
∑

j

p(Bj)
∑

i

p(Ai | Bj) log2

(
1

p(Ai | Bj)

)
(7.19)

M = Iin − L (7.20)

0 ≤ M ≤ Iin (7.21)

0 ≤ L ≤ Iin (7.22)

Processes with outputs that can be produced by more than one input have loss. These processes may
also be nondeterministic, in the sense that one input state can lead to more than one output state. The
symmetric binary channel with loss is an example of a process that has loss and is also nondeterministic.
However, there are some processes that have loss but are deterministic. An example is the AND logic gate,
which has four mutually exclusive inputs 00 01 10 11 and two outputs 0 and 1. Three of the four inputs lead
to the output 0. This gate has loss but is perfectly deterministic because each input state leads to exactly
one output state.

There is a quantity similar to L that characterizes a nondeterministic process, whether or not it has loss.
The output of a nondeterministic process contains variations that cannot be predicted from knowing the
input, that behave like noise in audio systems. We will define the noise N of a process as the uncertainty in
the output, given the input state, averaged over all input states. It is very similar to the definition of loss,
but with the roles of input and output reversed. Thus

N =
∑

i

p(Ai)
∑

j

p(Bj | Ai) log2

(
1

p(Bj | Ai)

)

=
∑

i

p(Ai)
∑

j

cji log2

(
1
cji

)
(7.23)



7.3 Deterministic Examples 72

Steps similar to those above for loss show analogous results. What may not be obvious, but can be proven
easily, is that the mutual information M plays exactly the same sort of role for noise as it does for loss.
The formulas relating noise to other information measures are like those for loss above, where the mutual
information M is the same:

Iout =
∑

i

p(Bj) log2

(
1

p(Bj)

)
(7.24)

N =
∑

i

p(Ai)
∑

j

cji log2

(
1
cji

)
(7.25)

M = Iout −N (7.26)

0 ≤ M ≤ Iout (7.27)

0 ≤ N ≤ Iout (7.28)

It follows from these results that

Iout − Iin = N − L (7.29)

7.2.1 Example: Binary Channel

For the SBC with bit error probability ε, these formulas can be evaluated, even if the two input probabilities
p(A0) and p(A1) are not equal. If they happen to be equal (each 0.5), then the various information measures
for the SBC in bits are particularly simple:

Iin = Iout = 1 bit (7.30)

L = N = ε log2

(
1
ε

)
+ (1− ε) log2

(
1

(1− ε)

)
(7.31)

M = 1− ε log2

(
1
ε

)
− (1− ε) log2

(
1

(1− ε)

)
(7.32)

The errors in the channel have destroyed some of the information, in the sense that they have prevented
an observer at the output from knowing with certainty what the input is. They have thereby permitted only
the amount of information M = Iin − L to be passed through the channel to the output.

7.3 Deterministic Examples

This process model applies to any system with mutually exclusive inputs and outputs, whether or not the
transitions are random. If all the transition probabilities cji are equal to either 0 or 1, then the process is
deterministic.

A simple example of a deterministic process is the NOT gate, which implements Boolean negation. If
the input is 1 the output is 0 and vice versa. The input and output information are the same, Iin = Iout

and there is no noise or loss: N = L = 0. The information that gets through the gate is M = Iin. See
Figure 7.7(a).

A slightly more complex deterministic process is the exclusive or, XOR gate. This is a Boolean function
of two input variables and therefore there are four possible input values. When the gate is represented by
a circuit diagram, there are two input wires representing the two inputs. When the gate is represented



7.3 Deterministic Examples 73

-

-

-

-

�
�

�
�

�
�>Z

Z
Z

Z
Z

Z~

0

1

0

1

(a) NOT gate (b) XOR gate

-

-

-

- -

-

��
����

��*
��������:
Z

Z
Z

Z
Z

Z
ZZ~-

00

01

10

11

1

0

Figure 7.7: Deterministic Examples

as a discrete process using a diagram like Figure 7.6(b), there are four mutually exclusive inputs and two
mutually exclusive outputs. See Figure 7.7(b).

If the probabilities of the four inputs are each 0.25, then Iin = 2 bits, and the two output probabilities are
each 0.5 so Iout = 1 bit. There is therefore 1 bit of loss, and the mutual information is 1 bit. The loss arises
from the fact that two different inputs produce the same output; for example if the output 1 is observed the
input could be either 0 1 or 1 0. There is no noise introduced into the output because each of the transition
parameters is either 0 or 1, i.e., there are no inputs with multiple transition paths coming from them.

Other, more complex logic functions can be represented in similar ways. However, for logic functions
with n physical inputs, the discrete process representation is awkward if n is larger than 3 or 4 because the
number of inputs is 2n.

7.3.1 Error Correcting Example

The Hamming Code encoder and decoder can be represented as discrete processes in this form. Consider
the (3, 1, 3) code, otherwise known as triple redundancy. The encoder has one 1-bit input (2 values) and a
3-bit output (8 values). The input 1 is wired directly to the output 1 1 1 and the input 0 to the output 0
0 0. The other six outputs are not connected, and therefore occur with probability 0. See Figure 7.8. The
encoder has N = 0, L = 0, and M = Iin = Iout. Note that the output information is not three bits even
though three physical bits are used to represent it, because of the intentional redundancy.

The output of the triple redundancy encoder is intended to be passed through a channel with the possi-
bility of a single bit error in each block of 3 bits. This noisy channel can be modelled as a nondeterministic
process with 8 inputs and 8 outputs (not shown). Each of the 8 inputs is connected with a high-probability
connection to the corresponding output, and with low probability connections to the three other values
separated by Hamming distance 1 – for example the input 0 0 0 is connected only to the outputs 0 0 0 (with
high probability) and 0 0 1, 0 1 0, and 1 0 0 each with low probability. This channel introduces noise since
there are multiple paths coming from each input. In general, when driven with arbitrary bit patterns, there
is also loss. However, when driven from the encoder of Figure 7.8, the loss is zero because only two of the
eight bit patterns have nonzero probability. The input information to the noisy channel is 1 bit and the
output information is greater than 1 bit because of the added noise. This example demonstrates that the
value of both noise and loss depend on the physics of the channel and also the probabilities of the input
signal.

The decoder, used to recover the signal originally put into the encoder, is shown in Figure 7.8(b). The
transition parameters are straightforward – each input is connected to only one output. The decoder has
loss (since multiple paths converge on each of the ouputs) but no noise (since each input goes to only one
output).



7.4 Capacity 74

-

-

-
-
-
-
-
-
-
-

-

-

1

0 000
001
010
011
100
101
110
111

(a) Triple Redundancy Encoder (b) Triple Redundancy Decoder

-

-

-
-
-
-
-
-
-
- -

(((((((((((1

�����������*

�����������
�

HHHHHHHHHHHR

XXXXXXXXXXXj
hhhhhhhhhhhq- 1

0000
001
010
011
100
101
110
111

Figure 7.8: Error Correcting Examples

Figure 7.9: General information flow in a discrete memoryless channel

7.4 Capacity

In the previous chapter of these notes, the channel capacity was defined. This concept can be generalized to
other processes.

Call W the maximum rate at which the input state of the process can be detected at the output. Then
the rate at which information flows through the process can be as large as WM . However, this product
depends on the input probability distribution p(Ai) and hence is not a property of the process itself, but on
how it is used. A better definition of process capacity is found by looking at how M can vary with different
input probability distributions. Select the largest mutual information discovered, and call that Mmax. Then
the process capacity C is

C = WMmax (7.33)

It is easy to see that Mmax cannot be arbitrarily large, since M ≤ Iin and Iin ≤ log2 n where n is the number
of distinct input states.

In the example of symmetric binary channels, it is not difficult to show that the probability distribution
that maximizes M is the one with equal probability for each of the two input states.

7.5 Observations

It has been shown that all five information measures, Iin, Iout, L, N , and M are nonnegative. It is not
necessary that L and N be the same, although they are for the symmetric binary channel. It is possible to
have processes with loss but no noise (e.g., the XOR gate), or noise but no loss (e.g., the noisy channel for
triple redundancy).



7.6 Cascaded Processes 75

Figure 7.10: Discrete Memoryless Channel: Cascade of Two as a Single Process

It is convenient to think of information as a physical quantity that is transmitted through this process
much the way physical material may be processed in a production line. The material being produced comes
in to the manufacturing area, and some is lost due to errors or other causes, some contamination may be
added (like noise) and the output quantity is the input quantity, less the loss, plus the noise. The useful
product is the input minus the loss, or alternatively the output minus the noise. The flow of information
through a discrete memoryless process is shown using this paradigm in Figure 7.9.

An interesting question arises. Probabilities depend on your current state of knowledge, and one observer’s
knowledge may be different from another’s. This means that the loss, the noise, and the information
transmitted are all observer-dependent. Is it OK that important engineering quantities like noise and loss
depend on who you are and what you know? If you happen to know something about the input that
your colleague does not, is it OK for your design of a nondeterministic process to be different, and to
take advantage of your knowledge? This question is something to think about; there are times when your
knowledge, if correct, can be very valuable in simplifying designs, but there are other times when it is prudent
to design using some worst-case assumption of input probabilities so that in case the input does not conform
to your assumed probabilities your design still works.

7.6 Cascaded Processes

It is interesting to consider two processes in cascade. The term “cascade” refers to having the output from
one process serve as the input to another process. Then the two cascaded processes behave just like one
larger process, with the states between the two hidden. We have seen that discrete memoryless processes
are characterized by values of Iin, Iout, L, N , and M . Figure 7.10 shows a cascaded pair of processes on
the left, each characterized by its own parameters. Of course the parameters of the second process depend
on the input probabilities it encounters, which are determined by the transition probabilities (and input
probabilities) of the first process.

But the cascade of the two processes is itself a discrete memoryless process and therefore should have
its own five parameters, as suggested in Figure 7.10. The parameters of the overall model can be calculated
either of two ways. First, the transition probabilities of the overall process can be found from the transition
probabilities of the two models that are connected together; in fact the matrix of transition probabilities is
merely the matrix product of the two transition probability matrices for process 1 and process 2. All the
parameters can be calculated from this matrix and the input probabilities .

The other approach is to seek formulas for Iin, Iout, L, N , and M of the overall process in terms of the
corresponding quantities for the component processes. Unfortunately this approach does not generally work
exactly, but it does provide upper and/or lower bounds of performance and is therefore useful in providing
insight into the operation of the cascade. Using the notation in the figure above, it can be easily shown that

L−N = (L1 + L2)− (N1 + N2) (7.34)

It is then straightforward (though perhaps tedious) to show that the loss L for the overall process is not



7.6 Cascaded Processes 76

equal to the sum of the losses for the two components L1 + L2, but instead

0 ≤ L1 ≤ L ≤ L1 + L2 (7.35)

so that the loss is bounded from above and below. Also,

L1 + L2 −N1 ≤ L ≤ L1 + L2 (7.36)

so that if the first process is noise-free then L is exactly L1 + L2.
There are similar formulas for N in terms of N1 + N2:

0 ≤ N2 ≤ N ≤ N1 + N2 (7.37)

N1 + N2 − L2 ≤ N ≤ N1 + N2 (7.38)

Similar formulas for the mutual information of the cascade M follow from these results:

M1 − L2 ≤ M ≤ M1 ≤ Iin,1 (7.39)
M1 − L2 ≤ M ≤ M1 + N1 − L2 (7.40)
M2 −N1 ≤ M ≤ M2 ≤ Iout,2 (7.41)
M2 −N1 ≤ M ≤ M2 + L2 −N1 (7.42)

Two other formulas for M are easily derived from Equation 7.21 applied to the first process and the
cascade, and Equation 7.26 applied to the second process and the cascade:

M = M1 + L1 − L

= M1 + N1 + N2 −N − L2 (7.43)
M = M2 + N2 −N

= M2 + L2 + L1 − L−N1 (7.44)

where the second formula in each case comes from the use of Equation 7.34.
As a special case, note that if the second process is lossless, L2 = 0 and therefore M = M1. In that case,

the second process does not lower the mutual information below that of the first process. Similarly if the
first process is noiseless, then N1 = 0 and M = M2.


	7 Processes
	7.1 Process Model
	7.1.1 Example: AN D Gate
	7.1.2 Example: Binary Channel

	7.2 Information, Loss, and Noise
	7.2.1 Example: Binary Channel

	7.3 Deterministic Examples
	7.3.1 Error Correcting Example

	7.4 Capacity
	7.5 Observations
	7.6 Cascaded Processes


