
Chapter 1

Bits

Information is measured in bits, just as length is measured in meters and time is measured in seconds. Of
course knowing the amount of information is not the same as knowing the information itself, what it means,
or what it implies. In these notes we will not consider the content or meaning of information, just the
quantity.

Different scales of length are needed in different circumstances. Sometimes we want to measure length in
kilometers, sometimes in inches, and sometimes in Ångströms. Similarly, other scales for information besides
bits are sometimes needed; in the context of physical systems information is often measured in Joules per
Kelvin.

How is information quantified? Consider a situation that could have any of several possible outcomes.
Examples might be flipping a coin (2 outcomes, heads or tails) or selecting a card from a deck of playing
cards (52 possible outcomes). How compactly could one person (by convention usually named Alice) tell
another person (Bob) this outcome?

First consider the case of the two outcomes of flipping a coin, and let us suppose they are equally likely.
If Alice wants to tell Bob the result of the coin toss, she could use several possible techniques, but they
are all equivalent, in terms of the amount of information conveyed, to saying either “heads” or “tails” or to
saying 0 or 1. We say that the information so conveyed is one bit.

If Alice flipped two coins, she could say which of the four possible outcomes actually happened, by saying
0 or 1 twice. Similarly, the result of an experiment with eight equally likely outcomes could be conveyed with
three bits, and more generally 2n outcomes with n bits. Thus the amount of information is the logarithm
(to the base 2) of the number of equally likely outcomes.

Note that conveying information requires two phases. First is the “setup” phase, in which Alice and Bob
agree on what they will communicate about, and exactly what each sequence of bits means. This common
understanding is called the code. Thus to convey the suit of a card chosen from a deck, their code might be
that 00 means clubs, 01 diamonds, 10 hearts, and 11 spades. Agreeing on the code is done before the outcome
is known. (Note that the setup phase can include informing the recipient that there is new information to
be sent.) Then, there is the “communication” phase, where actual sequences of 0 and 1 are sent. These
sequences are the data. Using the agreed-upon code, Alice draws the card, and tells Bob the suit by sending
two bits of data. She could do so repeatedly for multiple experiments, using the same code.

After Bob knows that a card is drawn but before receiving Alice’s message, he is uncertain about the
suit. His uncertainty, or lack of information, can also be expressed in bits. Upon hearing the result, his
uncertainty is reduced by the information he receives. Bob’s uncertainty rises during the setup phase and
then is reduced during the communication phase.

Note some important things about information, some of which are illustrated in this example.
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• Information can be learned through observation, experiment, or measurement.

• Information is subjective, or “observer-dependent.” What Alice knows is different from what Bob
knows. (If information were not subjective, there would be no need to communicate it.)

• A person’s uncertainty can be increased upon learning that there is an observation about which infor-
mation may be available, and then can be reduced by receiving that information.

• Information can be lost, either through loss of the data itself, or through loss of the code.

• The physical form of information is localized in space and time. As a consequence . . .

– Information can be sent from one place to another.

– Information can be stored and then retrieved later.

1.1 The Mathematical Bit

As we have seen, information can be communicated by sequences of 0 and 1 values. This very powerful
abstraction lets us ignore many of the details associated with specific information processing and transmission
systems.

Bits are simple, having only two possible values, and the mathematics used to manipulate single bits is
not difficult. It is known as Boolean algebra, after the mathematician George Boole (1815 - 1864). In some
ways it is similar to the algebra of integers or real numbers which is taught in high school, but in some ways
it is different.

Algebras deal with variables that have certain possible values, and with functions which, when presented
with one or more variables, return a result which again has certain possible values. In the case of Boolean
algebra, the possible values are 0 and 1.

There are exactly four Boolean functions of a single variable. One of them, called the identity, simply
returns its argument. Another, called not, or negation, or inversion, or complement, changes 0 into 1 and
vice versa. The other two simply return either 0 or 1 regardless of the argument. The easiest way to describe
these functions is to simply give a table with their results:

x f(x)

Argument IDENTITY NOT ZERO ONE

0 0 1 0 1
1 1 0 0 1

Table 1.1: Boolean functions of a single variable

Note that Boolean algebra is much simpler than algebra dealing with integers or real numbers, each of
which has infinitely many functions of a single variable.

How many Boolean functions are there of two variables A and B? Each of the two arguments can take on
either of two values, so there are four possible input combinations. There are 16 different ways of assigning
the two Boolean values to four inputs. Of these 16, two simply ignore the input, four assign the output to
be either A or B or their complement, and the other ten depend on both arguments. The most often used
are AND, OR, XOR, NAND, and NOR, shown in Table 1.2.

It is tempting to think of the Boolean values 0 and 1 as the same as the integers 0 and 1. Then AND
would correspond to multiplication and OR to addition, sort of. However, familiar results from ordinary
algebra simply do not hold for Boolean algebra, so such analogies are dangerous. It is absolutely necessary
to distinguish the integers 0 and 1 from the Boolean values 0 and 1; they are not the same.

Keeping all this straight is made more difficult by the standard notation used for Boolean algebra. (We
will use this notation here, even though it can be confusing, because less confusing notations are awkward in
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x f(x)

Argument AND NAND OR NOR XOR

00 0 1 0 1 0
01 0 1 1 0 1
10 0 1 1 0 1
11 1 0 1 0 0

Table 1.2: Boolean functions of a two variables

practice.) The AND function is represented the same way as multiplication, by writing two boolean values
next to each other with a dot in between: A AND B is written AB or A · B. The OR function is written
using the plus sign: A + B means A OR B. Negation, or the NOT function, is denoted by a bar over the
symbol or expression, so NOT A is A. Finally, the exclusive-or function XOR is represented by a circle
with a plus sign inside, A ⊕ B.

NOT A
AND A ·B

NAND A ·B
OR A + B

NOR A + B
XOR A ⊕ B

Table 1.3: Boolean logic symbols

There are several general properties of Boolean functions that are useful. These can usually be proven
by simply demonstrating them for all of the finite number of possible combinations of values.

A function is said to be reversible if, knowing the output, the input can be found. Two of the four
functions of a single variable are reversible in this sense (and in fact are self-inverse). Clearly none of the
functions of two (or more) inputs can by themselves be reversible, since there are more input variables than
output variables, but some combinations of two or more such functions can be reversible; for example it is
easily demonstrated that the exclusive-or function A ⊕ B is reversible when augmented by the function that
returns the first argument.

For functions of two variables, there are many properties to consider. For example, if A and B are
Boolean variables, able to be either 0 or 1, then the function AND is commutative because A ·B = B ·A.
Many of the other 15 functions are also commutative. Some properties of Boolean algebra are summarized
in Table 1.4.

There are several notations used for Boolean algebra. The one used here is the most common. Sometimes
AND, OR, and NOT are represented in the form AND(A,B), OR(A,B), and NOT (A). Sometimes infix
notation is used where A ∧ B denotes A · B , A ∨ B denotes A + B, and ∼ A denotes A. Boolean algebra
is also useful in mathematical logic, where the notation A ∧B for A ·B, A ∨B for A + B, and ¬A for A is
commonly used.

1.2 The Physical Bit

If information is to be stored or transported, it must have a physical form. The device that stores the bit
must have two distinct states, one of which is interpreted as 0 and the other as 1. A bit is stored by putting
the device in one or another of these states, and when the bit is needed the state of the device is measured.
If the device has moved from one place to another then communications has occurred. If the device has
persisted over some time then it has served as a memory. If the device has had its state changed in a random
way then its original value has been forgotten.
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Idempotent: A ·A = A Absorption: A · (A + B) = A
A + A = A A + (A ·B) = A

Complementary: A ·A = 0 Associative: A · (B · C) = (A ·B) · C
A + A = 1 A + (B + C) = (A + B) + C

A ⊕ A = 0 A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
A ⊕ A = 1

Minimum: A · 1 = A Unnamed Theorem: A · (A + B) = A ·B
A · 0 = 0 A + (A ·B) = A + B

Maximum: A + 0 = A De Morgan: A ·B = A + B
A + 1 = 1 A + B = A ·B

Commutative: A ·B = B ·A Distributive: A · (B + C) = (A ·B) + (A · C)
A + B = B + A A + (B · C) = (A + B) · (A + C)

A ⊕ B = B ⊕ A
A ·B = B ·A

A + B = B + A

Table 1.4: Properties of Boolean Algebra
These formulas apply and are valid for all values of A, B, and C.

We are naturally interested in physical devices which are small. The limit to how small an object can be
and still store a bit of information comes from quantum mechanics. A quantum bit, or qubit, is an object
that can store a single bit but is so small that it is subject to the limitations quantum mechanics places on
measurements. In particular, a measurement usually alters the object being measured. On the other hand,
if a bit is represented by many objects acting together, a measurement can be made and enough objects are
left unchanged so that the same bit can be measured again. And if not all objects measure in the same way
the result might be intermediate between the two possible Boolean values.

1.3 The Classical Bit

In today’s electronic systems, information is carried by many thousands of objects, all prepared in the same
way (or at least that is a convenient way to look at it). Thus in a semiconductor memory a single bit is
stored using the presence or absence of perhaps a thousand electrons. Similarly, a large number of photons
are used in radio communication.

Because many objects are involved, measurements on them are not restricted to a simple yes or no, but
instead can range over a continuum of values. Thus the voltage on a semiconductor logic element might be
anywhere in a range from, say, 0V to 5V . The voltage might be interpreted to allow a margin of error, so
that voltages between 0V and 1V would represent logical 0, and voltages between 4V and 5V a logical 1.
The circuitry would not guarantee to interpret voltages between 1V and 4V properly.

If the noise in a circuit is always smaller than 1V , and the output of every circuit gate is either 0V or 5V ,
then the voltages can always be interpreted as bits without error. Circuits of this sort display what is known
as “restoring logic” since small deviations are eliminated as the information is processed. The robustness of
modern computers depends on the use of restoring logic.

A classical bit is an abstraction in which the bit can be measured without perturbing it. As a result
copies of a classical bit can be made (a qubit cannot be copied). This abstraction works well for circuits
using restoring logic.
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Because all physical systems ultimately obey quantum mechanics, the classical bit is always an approxi-
mation to reality. However, even with the most modern, smallest devices available, it is an excellent one.

An interesting question is whether the classical bit abstraction will continue to be useful as semiconductor
technology reduces the size of components. Ultimately, as we try to represent or control bits with a small
number of atoms or photons, the limiting role of quantum mechanics will become important. It is difficult
to say exactly when this will happen, but some people believe it will be before the year 2015.

1.4 The Quantum Bit

According to quantum mechanics, it is possible for a small object to have two states which can be measured.
This sounds perfect for storing bits. However, if these two states have the same energy associated with them,
then it is possible to prepare the object so that it has a combination of these two states. So what is it that
would be measured?

In a classical context, a measurement could determine exactly what that combination is. Furthermore,
for greater precision a measurement could be repeated, and multiple results averaged. However, the quantum
context is different. In a quantum measurement, the question that is asked is whether the object is or is not in
some particular state, and the answer is always either “yes” or “no,” never “maybe” and never, for example,
“27% yes, 73% no.” Furthermore, after the measurement the system ends up in the state corresponding to
the answer, so further measurements would not yield additional information. The result of any particular
measurement cannot be predicted, but the likelihood of the two answers can, in terms of probabilities. This
peculiar nature of quantum mechanics offers both a limitation of how much information can be carried by a
single qubit, and also an opportunity to design systems which take special advantage of these features.

We will illustrate quantum bits with an example. Let’s take as our qubit a photon, which is the elementary
particle for electromagnetic radiation, including both radio, TV, and light. A photon is a good candidate
for carrying information from one place to another. It is small, and travels fast.

A photon has an electric and magnetic field oscillating simultaneously. The direction of the electric field
is called the direction of polarization (we will not consider circularly polarized photons here). Thus if a
photon is headed in the z-direction, its electric field can be in the x-direction, in the y-direction, or in fact
in any direction in the x-y plane or the “horizontal-vertical plane.”

The polarization can be used to store a bit of information. Thus Alice could prepare a photon with
horizontal polarization if the bit is 0 and with vertical polarization if the bit is 1. Then when Bob gets the
photon, he can measure its vertical polarization (i.e., ask whether the polarization is vertical). If the answer
is “yes”, then he infers the bit is 1.

It might be thought that more than a single bit of information could be transmitted by a single photon’s
polarization. Why couldn’t Alice send two bits, using angles of polarization different from horizontal and
vertical? Why not use horizontal, vertical, half-way between them tilted right, and half-way between them
tilted left. The problem is that Bob has to decide what angle to measure. He cannot, by quantum mechanical
limitations, ask the question ”what is the angle of polarization” but only “is the polarization in the direction
I choose to measure.” And the result of his measurement can only be “yes” or “no”, in other words, a single
bit. And then after the measurement the photon ends up either in the plane he measured (if the result was
“yes”) or perpendicular to it (if the result was “no”).

If Bob wants to measure the angle of polarization more accurately, why couldn’t he repeat his mea-
surement many times and take an average? This does not work because the very act of doing the first
measurement resets the angle of polarization to the angle he measured or the angle perpendicular to it.
Thus subsequent measurements will all be the same.

Or Bob might decide to make multiple copies of the photon, and then measure each of them. This
approach does not work either. He can only make a copy of the photon by measuring its properties and then
creating a new photon with exactly those properties. All the photons he creates will measure the same.

What does Bob measure if Alice had prepared the photon with an arbitrary angle? Or more to the point,
if the photon had its angle of polarization changed because of random interactions along the way? Or if the
photon had been measured by an evil eavesdropper (typically named Eve) at some other angle and therefore
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been reset to that angle? In these cases, Bob always gets an answer “yes” or “no”, whatever direction of
polarization he chooses to measure, and the closer the actual polarization is to that direction the more likely
the answer is yes. To be more specific, the probability of the answer yes is the square of the cosine of the
angle between Bob’s angle of measurement and Alice’s angle of preparation. It is not possible to predict the
result of any one of Bob’s measurements. This inherent randomness is an unavoidable aspect of quantum
mechanics.

Qubits have other interesting properties, not mentioned so far, when there are two or more of them and
they are prepared together in particular ways. One such property, which we will not discuss now, known
as “entanglement,” allows two photons to go to different places yet have a single correlated state such that
measurement of one of the photons influences subsequent measurements of the other. Many people find such
behavior bizarre because it is so different from everyday experience.

Note that not all quantum systems exhibit the peculiarities discussed here. The classical bit model may
be sufficient for some quantum systems. For example, if the angles of polarization are constrained to be
horizontal and vertical, and there are no noise perturbations, and the appropriate angle for measurement is
known, a measurement can always be made without perturbing the photon. Thus in this special case copying
is possible. If there is a very small amount of noise, so small that the perturbations in angle of polarization
do not appreciably affect the probabilities of measurement, then there is a sort of restoring logic in the sense
that after a measurement the polarization is always reset to horizontal or vertical.

1.5 An Advantage of Qubits

There are things that can be done in a quantum context but not classically. Some are advantageous. Consider
again Alice trying to send information to Bob using polarized photons. She can prepare the photon at any
angle, and could tell Bob, at the start of the setup phase, what the angle will be. Now let us suppose that
a saboteur Sam wants to spoil this communication by processing the photons at some point in the path
between Alice and Bob. He constructs a machine that will reflect the polarization about an angle he selects.
Thus if he selects 45◦, every horizontal photon becomes a vertical photon and vice versa. Knowing Alice
codes bits as either horizontal or vertical photons, Sam sets his angle to 45◦and employs the machine on half
the photons in the message, selected at random.

Since Alice sends Bob messages coded horizontally and vertically, half the bits will be inverted by Sam,
and no useful communication is possible, because for every photon which Bob measures, it is equal likely to
be what Alice sent, or the other Boolean value.

Alice learns about Sam’s scheme and wants to reestablish reliable communication with Bob. What can
she do?

She tells Bob (using a path that Sam does not overhear) to measure photons at 45◦ and 135◦. Sam’s
machine reflects the angle of polarization about 45◦, so it does not affect either of the two states chosen by
Alice. Of course if Sam discovers what Alice is doing, he can rotate his machine back to vertical. Or there
are other measures and counter-measures that could be put into action.

This scenario relies on the quantum nature of the photons, and the fact that single photons cannot be
measured by Sam except along particular angles of polarization. Thus Alice’s technique for thwarting Sam
is not possible with classical bits.


