Chapter 4

Errors

In Chapter 2 were examples of how symbols could be represented by arrays of bits. Chapter 3 presented some techniques of compressing the bit representations of such symbols, or messages consisting of a sequence of such symbols, so fewer bits would be required. If all the original information is preserved the compression is lossless, or reversible; if (presumably unimportant) information is lost, the compression is lossy, or irreversible. Often source coding and compression are combined into one operation.

Because of compression, there are fewer bits carrying the same information, so each bit is more important, and the consequence of an error in a single bit is apt to be more serious. All practical systems introduce errors to information that they process (some systems more than others, of course). In this chapter we examine techniques for detecting errors when they happen and, in some cases, repairing them.

4.1 Extension of System Model

Our model for information handling is now extended to include channel coding. The new channel encoder adds bits to the message so that in case it gets corrupted in some way, the channel decoder will know that and possibly even be able to repair the damage.

![Figure 4.1: Communication system with errors](image-url)

4.2 How do Errors Happen?

The model pictured above is quite general. Its purpose might be to transmit information from one place to another (communication), store it for use later (data storage), or even process it so that the output is not intended to be a faithful replica of the input (computation). Different systems involve different physical devices as the channel (for example radio communication, a hard drive, or a computer). Many physical effects can cause errors. A CD or DVD can get scratched. A memory cell can fail. A telephone line can be noisy. A logic gate can respond to an unwanted surge in power supply voltage.

For our purposes we will model all such errors as a change in one or more bits from 1 to 0 or vice versa. In the usual case where a message consists of several bits, we will usually assume that different bits get corrupted independently, although sometimes errors in adjacent bits are not independent, but instead have a common underlying cause and may happen in bursts.

4.3 Detection vs. Correction

There are two ways to deal with errors. One is to detect the error and then let the person or system that uses the output know what happened. The other is to attempt to repair the message by correcting the error. In both cases, extra bits are added to the messages to make them longer. The result is that the message contains redundancy—if it did not, every possible bit pattern would be a legal message and an error would simply change one valid message into another. By changing things so that many (indeed, most) bit patterns do not correspond to legal messages, the effect of an error is usually to change the message to one of the illegal patterns; the channel decoder can detect that there was an error and take suitable action. In fact, if every illegal pattern is closer (in a sense to be described below) to one legal message than any other, the decoder could substitute that closest legal message, thereby repairing the damage.

In everyday life error detection and correction occur routinely. Written and spoken communication is done with natural languages such as English, and there is sufficient redundancy (estimated at 50%) so that even if several letters, sounds, or even words are omitted, humans can still understand the message.

Note that channel encoders, because they add bits to the pattern, generally preserve all the original information, and therefore are reversible. The channel, by allowing errors to occur, actually introduces information (the details of exactly which bits got changed). The decoder is irreversible in that it discards some information, but if well designed it throws out the “bad” information caused by the errors, and keeps the original “good” information. In later chapters the information flow in such systems will be analyzed.

4.4 Hamming Distance

We need some technique for saying how similar two bit patterns are. In the case of physical quantities such as length, it is quite natural to think that two measurements are close if the two numbers measured are approximately equal. Is there a similar sense in which two patterns of bits are “approximately equal?”

At first it is tempting to say that two bit patterns are close if they represent integers that are adjacent, or floating point numbers that are close. However, this notion is not useful because it is based on particular meanings ascribed to the bit patterns. It is not obvious that two bit patterns which differ in the first bit should be any more or less “different” than two which differ in the last bit.

A more useful definition of the difference between two bit patterns is the number of bits that are different between the two. This is called the Hamming distance, after Richard W. Hamming (1915–1998). Thus 0110 and 1110 are separated by Hamming distance of one. The Hamming distance between two identical patterns is zero.

Note that a Hamming distance can only be defined between two bit patterns with the same number of bits. It does not make sense to speak of the Hamming distance of a single string of bits, or between two bit strings of different lengths.

1 See a biography of Hamming at http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Biographies/Hamming.html
Using this definition, the effect of errors introduced in the channel can be described by the Hamming distance between the bit pattern at the input to the channel and that at the output. No errors means Hamming distance zero, and a single error means Hamming distance one. If two errors occur, this usually means a Hamming distance of two. (Note, however, that if the two errors happen to the same bit, the second would cancel the first, and the Hamming distance would actually be zero.)

The action of a channel encoder can be appreciated in terms of Hamming distance. In order to provide error detection, it is necessary that the encoder produce bit patterns so that any two different inputs are separated in the output by Hamming distance at least two—otherwise a single error could convert one legal codeword into another. In order to provide double-error detection the separation of any two valid codewords must be at least three. In order for single-error correction to be possible, all valid codewords must be separated by Hamming distance at least three.

4.5 Single Bits

Transmission of a single bit may not seem important, but it does bring up some commonly used techniques for error detection and correction.

The way to protect a single bit is to send it more than once, and expect that more often than not each bit sent will be unchanged. The simplest case is to send it twice: the channel encoder changes 0 to 00 and 1 to 11. The decoder can then raise an alarm if the two bits it receives are different (that can only happen because of an error). But wait. What if there are two errors? If the two errors both happen on the same bit, then that bit gets restored to its original value and it is as though no error happened. But if the two errors happen on different bits then they end up the same, although wrong, and the error is undetected. If there are more errors, then the possibility of undetected changes becomes substantial (an odd number of errors would be detected but an even number would not).

If multiple errors are likely, greater redundancy can help. Thus, to detect double errors, you can send the single bit three times. Unless all three are the same when received by the channel decoder, it is known that an error has occurred, but it is not known how many errors there might have been. And of course triple errors may go undetected.

Now what can be done to allow the decoder to correct an error, not just detect one? If there is known to be at most one error, and if a single bit is sent three times, then the channel decoder can tell whether an error has occurred (if the three bits are not all the same) and it can also tell what the original value was (whichever value, 0 or 1, appears twice in the output). This technique, called **triple redundancy**, can be used to protect communication channels, memory, or arbitrary computation.

Note that triple redundancy can be used either to correct single errors or to detect double errors, but not both. If you need both, you can use quadruple redundancy—send four identical copies of the bit. How efficient and how effective are these techniques? As for efficiency, it is convenient to define the **code rate** as the number of bits before channel coding divided by the number after the encoder. The code rate lies between 0 and 1. Double redundancy leads to a code rate of 0.5, and triple redundancy 0.33. As for effectiveness, if errors are very unlikely it may be reasonable to ignore the even more unlikely case of two errors so close together. If so, triple redundancy is very effective. On the other hand, some physical sources of errors may wipe out data in large bursts in which case one error, even if unlikely, is apt to be accompanied by a similar error on adjacent bits, so triple redundancy will not be effective.

Figures 4.2 and 4.3 illustrate how triple redundancy protects single errors but can fail if there are two errors.

4.6 Block Codes

To provide error-correcting protection to messages k bits long, bits can be added to make a **codeword** of length n bits, where $n > k$. It is customary to call such codes (n, k) **block codes**. Their code rate is k/n. Thus, triple redundancy is a $(3, 1)$ code.
4.6 Block Codes

4.6.1 Parity

Suppose you want to detect (but not correct) single bit errors in an 8-bit byte of data. You can do this by adding a parity bit (also called a check bit) to the data, changing the 8-bit string into 9 bits. The added bit would be 1 if the number of bits equal to 1 in the original data is odd, and 0 otherwise. Thus the string of 9 bits would always have an even number of bits equal to 1. Then the decoder would simply count the number of 1 bits and if it is odd, know there is an error (or, more generally, an odd number of errors). The decoder could not repair the damage, and indeed could not even tell if the damage might by chance have occurred in the parity bit, in which case the data bits would still be correct. If would also not detect double errors (or more generally an even number of errors).

This technique is a (9, 8, 2) code.

The use of parity bits is efficient, since the code rate is 8/9, but of limited effectiveness. It cannot deal with the case where the channel represents computation and therefore the output is not intended to be the same as the input. It is most often used when (1) the likelihood of an error is very small, (2) there is no reason to suppose that errors of adjacent bits occur together, and (3) the receiver is able to request a
retransmission of the data (or otherwise signal an error).

Sometimes parity is used even when retransmission is not possible. On early IBM Personal Computers, bytes in memory were protected by single-bit parity. When an error was detected (very infrequently), the computer crashed.

If the data being transmitted is more conveniently thought of as sequences of objects which are themselves encoded in multiple bits, such as letters or digits, the advantages of parity bits can be achieved by adding similar objects rather than single parity bits. For example, check digits can be added to an array of digits. Section 4.8 discusses some common commercial uses of check digits.

4.6.2 Rectangular Codes

Rectangular codes can provide single error correction and double error detection simultaneously. Suppose we wish to protect a byte of information, the eight data bits D0 D1 D2 D3 D4 D5 D6 D7. Let us arrange these in a rectangular table and add parity bits for each of the four columns and each row, including the new row of parity bits. The result is a larger table of 15 bits (8 data and 7 parity) shown in Table 4.1.

<table>
<thead>
<tr>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>PR0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td>D7</td>
<td>PR1</td>
</tr>
<tr>
<td>PC0</td>
<td>PC1</td>
<td>PC2</td>
<td>PC3</td>
<td>P</td>
</tr>
</tbody>
</table>

Table 4.1: Rectangular code, with data bits Dx and parity bits Pxx

Each of the row and column parity bits PR0 PR1 PC0 PC1 PC2 PC3 is set so that the overall parity of the expanded row or column is even. The total parity bit P is then set so that the right-hand column consisting only of parity bits has itself even parity—this guarantees that the bottom row also has even parity. The 15 bits can be sent through the channel and the decoder analyzes the received bits. It performs a total of 8 parity checks, on the three rows and the five columns. If there is a single error in any one of the bits, then one of the three row parities and one of the five column parities will be wrong. The offending bit can be identified (it lies where the row and column with incorrect parity intersect) and changed. If there are two errors, there will be a different pattern of parity failures; double errors can be detected but not corrected. Triple errors can be nasty in that they can mimic a single error of an innocent bit.

Other geometrically inspired codes can be devised, based on arranging the bits in triangles, cubes, pyramids, wedges, or higher-dimensional structures.

4.6.3 Hamming Codes

Suppose we wish to correct single errors, and are willing to ignore the possibility of multiple errors. A set of codes was invented by Richard Hamming with the minimum number of extra parity bits.

Each extra bit added by the channel encoder allows one check of a parity by the decoder and therefore one bit of information that can be used to help identify the location of the error. For example, if three extra bits are used, the three tests could identify up to eight error conditions. One of these would be “no error” so seven would be left to identify the location of up to seven places in the pattern with an error. Thus the data block could be seven bits long. Three of these bits would be added for error checking, leaving four for the payload data. Similarly, if there were four parity bits, the block could be 15 bits long leaving 11 bits for payload.

Codes that have as large a payload as possible for a given number of parity bits are sometimes called perfect. It is possible, of course, to have a smaller payload, in which case the resulting Hamming codes would have a lower code rate. For example, since much data processing is focused on bytes, each eight bits long, a convenient Hamming code would be one using four parity bits to protect eight data bits. Thus two bytes of data could be processed, along with the parity bits, in exactly three bytes.

Table 4.2 lists some perfect Hamming codes. The trivial case of 1 parity bit is not shown because there is no room for any data. The first entry is a simple one, and we have seen it already. It is triple redundancy,
<table>
<thead>
<tr>
<th>Parity bits</th>
<th>Block size</th>
<th>Payload</th>
<th>Code rate</th>
<th>Block code type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0.33</td>
<td>(3, 1, 3)</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>0.57</td>
<td>(7, 4, 3)</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11</td>
<td>0.73</td>
<td>(15, 11, 3)</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>26</td>
<td>0.84</td>
<td>(31, 26, 3)</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>57</td>
<td>0.90</td>
<td>(63, 57, 3)</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>120</td>
<td>0.94</td>
<td>(127, 120, 3)</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>247</td>
<td>0.97</td>
<td>(255, 247, 3)</td>
</tr>
</tbody>
</table>

Table 4.2: Perfect Hamming Codes

where a block of three bits is sent for a single data bit. As we saw earlier, this scheme is capable of single-error correction or double-error detection, but not both (this is true of all the Hamming Codes). The second entry is one of considerable interest, since it is the simplest Hamming Code with reasonable efficiency.

Let’s design a (7, 4, 3) Hamming code. There are several ways to do this, but it is probably easiest to start with the decoder. The decoder receives seven bits and performs three parity checks on groups of those bits with the intent of identifying where an error has occurred, if it has. Let’s label the bits 1 through 7. If the results are all even parity, the decoder concludes that no error has occurred. Otherwise, the identity of the changed bit is deduced by knowing which parity operations failed. Of the many possible perfect Hamming codes with three parity bits, one is particularly elegant:

- The first parity check uses bits 4, 5, 6, or 7 and therefore fails if one of them is changed
- The second parity check uses bits 2, 3, 6, or 7 and therefore fails if one of them is changed
- The third parity check uses bits 1, 3, 5, or 7 and therefore fails if one of them is changed

These rules are easy to remember. The three parity checks are part of the binary representation of the location of the faulty bit—for example, the integer 6 has binary representation 1 1 0 which corresponds to the first and second parity checks failing but not the third.

Now consider the encoder. Of these seven bits, four are the original data and three are added by the encoder. If the original data bits are 3 5 6 7 it is easy for the encoder to calculate bits 1 2 4 from knowing the rules given just above—for example, bit 2 is set to whatever is necessary to make the parity of bits 2 3 6 7 even which means 0 if the parity of bits 3 6 7 is already even and 1 otherwise. The encoder calculates the parity bits and arranges all the bits in the desired order. Then the decoder, after correcting a bit if necessary, can extract the data bits and discard the parity bits, which have done their job and are no longer needed.

4.7 Advanced Codes

Block codes with minimum Hamming distance greater than 3 are possible. They can handle more than single errors. Some are known as Bose-Chaudhuri-Hocquenhem (BCH) codes. Of great commercial interest today are a class of codes announced in 1960 by Irving S. Reed and Gustave Solomon of MIT Lincoln Laboratory. These codes deal with bytes of data rather than bits. The (256, 224, 5) and (224, 192, 5) Reed-Solomon codes are used in CD players and can, together, protect against long error bursts.

More advanced channel codes make use of past blocks of data as well as the present block. Both the encoder and decoder for such codes need local memory but not necessarily very much. The data processing for such advanced codes can be very challenging. It is not easy to develop a code that is efficient, protects against large numbers of errors, is easy to program, and executes rapidly. One important class of codes is known as convolutional codes, of which an important sub-class is trellis codes which have commonly been used in data modems for voice telephone lines.
4.8 Detail: Check Digits

Error detection is routinely used to reduce human error. Many times people must deal with long serial numbers or character sequences that are read out loud or typed at a keyboard. Examples include credit-card numbers, social security numbers, and software registration codes. These actions are prone to error. Extra digits or characters can be included to detect errors, just as parity bits are included in bit strings. Often this is sufficient because when an error is detected the operation can be repeated conveniently.

In other cases, such as telephone numbers or e-mail addresses, no check characters are used, and therefore any sequence may be valid. Obviously more care must be exercised in using these, to avoid dialing a wrong number or sending an e-mail message or fax to the wrong person.

Credit Cards

Almost all credit card numbers have an extra check digit calculated by an algorithm patented in 1954 by Hans Peter Luhn (1896–1954) of IBM. It is designed to guard against a common type of error, which is transposition of two adjacent digits. It is used for credit cards and also for several other sets of identifying numbers.

Credit card numbers typically contain 15 or 16 digits (the Luhn algorithm actually works for any number of digits). The first six digits denote the organization that issued the card. The financial industry discourages public disclosure of these codes, though most are already widely known, certainly to those seriously considering fraud. Of those six digits, the first denotes the economic sector associated with the card, for example 1 and 2 for airlines, 3 for travel and entertainment, and 4, 5, and 6 for banks and stores. The last digit is the check digit, and the other digits denote the individual card account.

Credit card issuers have been assigned their own prefixes in accordance with this scheme. For example, American Express cards have numbers starting with 34 or 37, Visa with 4, MasterCard with 51, 52, 53, 54, or 55, and Discover with 60, 62, 64, or 65.

The Luhn procedure tests whether a credit card number, including the check digit, is valid. First, select those digits from the card number that appear in alternate positions, starting with the next-to-last digit. For example, if the card number is 1234 4567 7891, those digits would be 9, 7, 6, 4, 3, and 1. Note how many of those digits are greater than 4 (in this case 3 of them). Then add those digits together (for the example, 9 + 7 + 6 + 4 + 3 + 1 = 30). Then add all the digits in the card number (in this example, 57). Look at the sum of those three numbers (in this example, 3 + 30 + 57 = 90). If the result is a multiple of 10, as in this example, the card number passes the test and may be a valid number.

This procedure detects all single-digit errors, and almost all transpositions of adjacent digits (such as typing “1243” instead of “1234”), but there are many other possible transcription errors that are not caught, for example “3412” instead of “1234”. It has a high code rate (only one check digit added to 14 or 15 payload digits) and is simple to use. It cannot be used to correct the error, and is therefore of value only in a context where other means are used for correction.

ISBN

The International Standard Book Number (ISBN) is a 13-digit number that uniquely identifies a book or something similar to a book. Different editions of the same book may have different ISBNs. The book may be in printed form or it may be an e-book, audio cassette, or software. ISBNs are not of much interest to consumers, but they are useful to booksellers, libraries, authors, publishers, and distributors.

The system was created by the British bookseller W. H. Smith in 1966 using 9-digit numbers, then upgraded in 1970 for international use by prepending 0 to existing numbers, and then upgraded in 2007 to 13-digit numbers by prepending 978 (and using a different way of calculating the check digit).

A book’s ISBN appears as a number following the letters “ISBN”, most often on the back of the dust jacket or the back cover of a paperback. Typically it is near some bar codes and is frequently rendered in a machine-readable font.
There are five parts to an ISBN (four prior to 2007), of variable length, separated by hyphens. First is the 3-digit prefix 978 (missing prior to 2007). When the numbers using this prefix are exhausted, the prefix 979 will be used. Next is a country identifier, up to 5 digits (countries or areas sharing a common language may be grouped together). Next is a number that identifies a particular publisher. Then is the identifier of the title, and finally the single check digit. Country identifiers are assigned by the International ISBN Agency, located in Berlin. Publisher identifiers are assigned within the country or area represented, and title identifiers are assigned by the publishers. The check digit is calculated as described below.

For example, consider ISBN 0-9764731-0-0 (which is in the pre-2007 format). The language code 0 represents English-speaking countries. The publisher 9764731 is the Department of Electrical Engineering and Computer Science, MIT. The item identifier 0 represents the book “The Electron and the Bit.” The identifier is 0 because this book was the first published using an ISBN by this publisher. The fact that 7 digits were used to identify the publisher and only one the item reflects the reality that this is a very small publisher that will probably never need more than ten ISBNS. ISBNS can be purchased in sets of 10 (for $275 as of 2010), 100 ($995), or 1000 ($1750) and the publisher identifiers assigned at the time of purchase would have 7, 6, or 5 digits, respectively. This arrangement conveniently handles many small publishers and a few large publishers.

Publication trends favoring many small publishers rather than fewer large publishers may strain the ISBN system. Historically small publishers had to buy numbers at least 10 at a time, and if only one or two books were published, the unused numbers could not be used by another publisher. Organizations that were primarily not publishers but occasionally published a book were likely to lose the unused ISBNS because nobody could remember where they were last put. Now, as self-publication is more common, businesses have started to offer services needed by individual authors, including single ISBNS. This development may postpone the day when the world runs out of ISBNS.

Books published in 2007 and later have a 13-digit ISBN which is compatible with UPC (Universal Product Code) widely used in American stores. Actually both ISBN and UPC have been redefined as special cases of EAN-13 (European Article Number, the barcode now adopted by retailers worldwide). The procedure for finding EAN-13 check digits is used for 13-digit ISBNs (and also for 12-digit UPC numbers when prepended by 0 to fit into EAN-13). Consider the first 12 digits (without the check digit). Add the first, third, fifth, and other digits in odd-number positions together. Then add the result to three times the sum of digits in the even-numbered positions (2, 4, 6, 8 10, and 12). Subtract the result from the next higher multiple of 10. The result, a number between 0 and 9, inclusive, is the desired check digit.

This technique yields a code with a large code rate (0.92) that catches all single-digit errors but not all transposition errors.

For books published prior to 2007, the check digit can be calculated as follows. Start with the nine-digit number (without the check digit). Multiply each by its position, with the left-most position being 1, and the right-most position 9. Add those products, and find the sum’s residue modulo 11 (that is, the number you have to subtract in order to make the result a multiple of 11). The result is a number between 0 and 10. That is the check digit. For example, for ISBN 0-9764731-0-0, $1 \times 0 + 2 \times 9 + 3 \times 7 + 4 \times 6 + 5 \times 4 + 6 \times 7 + 7 \times 3 + 8 \times 1 + 9 \times 0 = 154$ which is equal to 0 mod 11.

If the check digit is less than ten, it is used in the ISBN. If the check digit is 10, the letter X is used instead (this is the Roman numeral for ten). If you look at several books published before 2007, every so often you will find the check digit X.

This technique yields a code with a large code rate (0.9) that is effective in detecting the transposition of two adjacent digits or the alteration of any single digit.

ISSN

The International Standard Serial Number (ISSN) is an 8-digit number that uniquely identifies print or non-print serial publications. An ISSN is written in the form “ISSN 1234-5678” in each issue of the serial. They are usually not even noticed by the general public, but are useful to publishers, distributors, and libraries.
ISSNs are used for newspapers, magazines, and many other types of periodicals including journals, society transactions, monographic series, and even blogs. An ISSN applies to the series as a whole, which is expected to continue indefinitely, rather than individual issues. The assignments are permanent—if a serial ceases to publish, the ISSN is not recovered, and if a serial changes its name a new ISSN is required. In the United States ISSNs are issued, one at a time, without charge, by an office at the Library of Congress.

Unlike ISBNs, there is no meaning associated with parts of an ISSN, except that the first seven digits form a unique number, and the last is a check digit. No more than 10,000,000 ISSNs can ever be assigned unless the format is changed. As of the end of 2011, there were 1,623,566 assigned worldwide, including 65,534 issued that year. When will the world run out of ISSNs? You do the math.

The check digit is calculated by the following procedure. Start with the seven-digit number (without the check digit). Multiply each digit by its (backwards) position, with the left-most position being 8 and the right-most position 2. Add up these products and subtract from the next higher multiple of 11. The result is a number between 0 and 10. If it is less than 10, that digit is the check digit. If it is equal to 10, the check digit is X. The check digit becomes the eighth digit of the final ISSN.