Chapter 10

Physical Systems

Until now we have ignored most aspects of physical systems by dealing only with abstract ideas such as information. Although we assumed that each bit stored or transmitted was manifested in some physical object, we focused on the abstract bits, and ignored any limitations caused by the laws of physics. This is a fundamental precept of the information age.

It was not always that way, and it will not be that way in the future. In past centuries, the physical manifestation of information was important because of its great cost. To preserve or communicate information, books had to be written or even words cut into stone. For example, consider the process of creating a medieval manuscript during the middle ages. Pages were laboriously copied and illustrated. The results are viewed today with great admiration for their artistry, and also for what they reveal about their culture, simply because they were so expensive to create and society could only afford to deal with what it considered the most important information.

Advances over the years have improved the efficiency of information storage and transmission—think of the printing press, telegraph, telephone, radio, television, digital signal processing, semiconductors, disk drives, and fiber optics. These technologies have led to sophisticated systems such as computers and data networks, and have shaped the methods used for the creation and distribution of information-intensive products. As the cost of processing and distributing data drops, it is relevant to consider the case where that cost is small compared to the cost of creating, maintaining, and using the information. It is in this domain that the abstract ideas of information theory, bits, coding, and indeed all of computer science are dominant. All sectors of modern society are coping with the increasing amount of information that is available. Fundamental ideas of intellectual property, copyrights, patents, and trade secrets are being rethought in light of the changing economics of information processing. Welcome to the information age.

The model of information disconnected from its physical embodiment is, of course, an approximation of reality. Eventually, as we make microelectronic systems more and more complicated, using smaller and smaller components, we will need to face the fundamental limits imposed not by our ability to fabricate small structures, but by the laws of physics. All physical systems are governed by quantum mechanics.

Quantum mechanics is often believed to be of importance only for small structures, say the size of an atom. Although it is unavoidable at that length scale, it also governs everyday objects. When dealing with information processing in physical systems, it is pertinent to consider both very small systems with a small number of bits of information, and large systems with large amounts of information.

The key ideas we have used thus far that need to be re-interpreted in the regime where quantum mechanics is important include

- The digital abstraction made practical by devices that can restore data with small perturbations
• Use of probability to express our knowledge in the face of uncertainty
• The Principle of Maximum Entropy as a technique to estimate probabilities without bias

10.1 Nature of Quantum Mechanics

Quantum mechanics is weird. There seems to be no way to make it appear otherwise. Many of its predictions are not what one would expect from everyday experience.

Quantum mechanics is mysterious, even to very good physicists. The underlying philosophy and interpretation of its equations and techniques are controversial.

Quantum mechanics is difficult to use. Relatively advanced mathematical skills are needed. The basic equation, although linear, is a partial differential equation that cannot be solved analytically except in a very few simple situations. Usually numerical solutions are necessary.

Quantum mechanics, like other physical theories, requires skill and judgement both in modelling and in mathematics. It is not generally taught in any depth before the graduate or advanced undergraduate level.

Quantum mechanics comes in different forms. It has many alternate formulations. Generally these are equivalent in the sense that they predict the same results of experiments, but are not equally easy to learn or to use for particular purposes.

In light of these disadvantages, why is quantum mechanics important? Because it works. It is the ONLY fundamental physical theory that works over such a wide range of situations. Its predictions have been verified experimentally time after time. It applies to everyday size objects, and to astronomical objects (although it is usually not necessary for them). It applies to atomic-size objects, to electromagnetic waves, and to sub-atomic objects. There is a version that is compatible with the theory of special relativity. About the only physical phenomenon not handled well at this time is gravity; quantum mechanics has not yet been extended to be compatible with the theory of general relativity.

In these notes we cannot cover quantum mechanics in much depth. For the purpose of examining information processing in physical systems, we only need to understand a few of the general features such systems must have. In particular, we need a model of physical systems in which there are many possible states, each with its own probability of being the one the system is actually in (i.e., the state “occupied”). These states all have physical properties associated with them, and energy is one of these. Quantum mechanics justifies this model.

We need this model in two situations. The first (in this chapter) is one with many states, where the objective is to understand how the information associated with the occupancy of these states affects the flow of energy. The second (in a later chapter of these notes) is one with a very small number of states, where information is represented using the occupancy of these states, and the objective is to understand both the limits and opportunities in information processing afforded by quantum mechanics.

The next two sections, Section 10.2 “Introduction to Quantum Mechanics” and Section 10.3 “Stationary States,” make use of calculus, which is not otherwise used in these notes. They may be skipped by readers willing to accept the state model without justification, who should proceed directly to Section 10.4 “Multi-State Model.” Other readers may get from the next two sections some indication of how quantum considerations lead to that model, and in the process find some aspects of quantum mechanics less mysterious.

10.2 Introduction to Quantum Mechanics

Perhaps the first question to ask about a physical object is, “where is it?” In everyday experience, it is possible to answer that question with great precision, limited only by the quality of measurement apparatus. In the realm of very small objects, however, there are some fundamental limitations and quantum mechanics must be used to address that question.

At its heart, quantum mechanics deals with energy. Because of the equivalence of mass and energy (remember Einstein’s famous formula $E = mc^2$ where c is the speed of light, 2.998×10^8 meters per second) quantum mechanics also deals with particles with mass. And because of the relationship between energy of
a photon and its frequency \(E = hf \) where \(h \) is the Planck constant, \(6.626 \times 10^{-34} \) Joule-seconds) quantum mechanics deals with photons.

According to quantum mechanics, the question “where is it” cannot be answered with certainty. How do we deal with uncertainty? By assigning probabilities. It is a little more complicated because of the continuous nature of space, and because space is considered to be infinite in extent (at least if general relativity is ignored), but the idea is the same as for probabilities of a finite set of events. The probability density is nonnegative, and integrates over all space to 1 (this is like the sum of the probabilities of all events that are mutually exclusive and exhaustive adding up to 1).

Thus in quantum mechanics, an object is represented as a “probability blob” which evolves over time. How does it evolve? The underlying equation is not written in terms of the probability density, but rather in terms of another function of space and time from which the probability density can be found.

Consider the square root of the probability density, as a function of space and time. Then, for added generality, let the square root be either positive or negative—when you square it to get the probability density, either one will do. Next, for even more generality, allow this square root to have an arbitrary phase in the complex plane, so that it has both a real and an imaginary part. We will no longer call this the square root, but instead the “wave function” \(\psi(r,t) \) which is a complex-valued function of space \(r \) and time \(t \). The probability density is then the magnitude of the wave function squared

\[
|\psi(r,t)|^2 = \psi(r,t)\psi^*(r,t)
\]

where the asterisk * denotes the complex conjugate.

In dealing with probabilities earlier, we never expressed them in terms of anything more primitive. Why do we need to now? Because the fundamental equation of quantum mechanics deals with \(\psi(r,t) \) rather than the probability density. Why is this? Don’t ask. It’s just one of many bizarre features of quantum mechanics.

The fundamental equation of quantum mechanics is the Schrödinger equation, published in 1926 by the Austrian physicist Erwin Schrödinger (1887–1961).\(^1\)

\[
i\hbar \frac{\partial \psi(r,t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(r,t) + V(r)\psi(r,t)
\]

where \(i \) is the (imaginary) square root of -1, \(m \) is the mass of this object, \(V(r) \) is the potential energy function, and \(\hbar = h/2\pi = 1.054 \times 10^{-34} \) Joule-seconds. Note that this equation contains partial derivatives in both space and time. The derivative with respect to time is first order, and the spatial derivatives are second order. The Laplacian \(\nabla^2 \) is defined as

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}
\]

where \(x, y, \) and \(z \) are the three spacial dimensions.

This equation 10.2 is frequently interpreted by multiplying both sides of it by \(\psi^*(r,t) \) and integrating over space. Then the left-hand side is identified as the total energy, and the right-hand side as the sum of the kinetic and potential energies (assuming the wave function is normalized so that the space integral of \(|\psi(r,t)|^2 \) is 1, a property required for the interpretation in terms of a probability density). Along with this interpretation it is convenient to call \(i\hbar \partial/\partial t \) the energy operator. It is an operator in the mathematical sense (something that operates on a function and produces as a result a function) and it has the correct dimensional units to be energy. Quantum mechanics is often formulated in terms of similar operators.

The Schrödinger equation is deceptively simple. It is a linear equation in \(\psi(r,t) \) in the sense that if both \(\psi_1 \) and \(\psi_2 \) are solutions then so is any linear combination of them

\[
\psi_{\text{total}} = \alpha_1 \psi_1 + \alpha_2 \psi_2
\]

\(^1\)See a biography of Schrödinger at http://www-groups.dcs.st-andrews.ac.uk/~history/Biographies/Schrodinger.html
where \(\alpha_1 \) and \(\alpha_2 \) are complex constants (if the linear combination is to lead to a valid probability distribution then the values of \(\alpha_1 \) and \(\alpha_2 \) must be such that the integral over all space of \(|\psi_{\text{total}}|^2 \) is 1). However, except for the simplest cases of \(V(r) \) the equation has not been solved in closed form.

Strictly speaking, the Schrödinger equation is really only correct if the object being described is the entire universe and \(V(r) = 0 \), in which case the equation is useless because it is so complicated. However, it is often used as an approximation in the case where the universe is considered in two pieces—a small one (the object) whose wave function is being calculated, and the rest of the universe (the “environment”) whose influence on the object is represented by the \(V(r) \) term. Note that the object may be a single photon, a single electron, or two or more particles, i.e., it need not correspond to the everyday concept of a single particle.

An object might interact with its environment. Naturally, if the object changes its environment (as would happen if a measurement were made of some property of the object) then the environment in turn would change the object. Thus after a measurement, an object will generally have a different wave function, and some information about the object may no longer be accessible. It is a feature of quantum mechanics that this new wave function is consistent with the changes in the environment; whether this feature is a consequence of the Schrödinger equation or is a separate aspect of quantum mechanics is unclear.

10.3 Stationary States

Even though, for a given \(V(r) \) term, the Schrödinger equation may be impossible to solve in closed form, much can be said about the nature of its solutions without knowing them in detail. This is done by expressing \(\psi(r,t) \) as a sum of functions known as stationary states.

Solutions of the Schrödinger equation that are of a particular form, namely the product of a function of space times another function of time, are known as stationary states. It can be easily shown from the Schrödinger equation that the most general form stationary states can have is

\[
\psi(r,t) = \phi(r)e^{-iEt/\hbar} \tag{10.5}
\]

for some real constant \(E \) (real because otherwise \(\psi(r,t) \) would grow without bound for very large or very small time), where \(\phi(r) \) obeys the equation (not involving time)

\[
E\phi(r) = -\frac{\hbar^2}{2m}\nabla^2\phi(r) + V(r)\phi(r) \tag{10.6}
\]

and where the integral over all space of \(|\phi(r)|^2 \) is 1. This technique of separating the dependence of \(\psi(r,t) \) on its two variables \(r \) and \(t \) is sometimes called “separation of variables.”

Nonzero solutions for \(\phi(r) \) cannot be obtained for all values of \(E \). There may be some ranges in which any value of \(E \) is OK and other ranges in which only specific discrete values of \(E \) lead to nonzero wave functions. Generally speaking, solutions corresponding to discrete values of \(E \) become small far away (i.e., they “vanish at infinity”) and are therefore localized in space, although their “probability blobs” may have large values at several places and might therefore be thought of as representing two or more particles.

These solutions are called “stationary states” because the magnitude of the wave function (and therefore the probability density as well) does not change in time; it is only a function of space.

For these stationary states, \(E \) has an interesting interpretation. If we multiply each side of Equation 10.6 by \(\phi^*(r) \) and integrate over space, we see (just as in the previous section) that \(E \) is the sum of two terms from the right-hand side, interpreted as the kinetic and potential energies of the object. Thus \(E \) is the total energy associated with that solution.

Of course in general solutions to the Schrödinger equation with this potential \(V(r) \) are not stationary states, i.e., do not have the special form of Equation 10.5. But remember that any linear combination of solutions to the Schrödinger equation is also a solution. We can use these stationary states as building blocks to generate more general solutions.

We are most interested in stationary states that are localized in space, so that the allowed values of \(E \) are discrete, although there could be many of them (perhaps even a countable infinite number). If we let \(j \)}
be an index over the stationary states, then it is possible to define the resulting wave functions \(\psi_j(r, t) \) so that they are “normalized” in the sense that the space integral of the magnitude of each squared is 1 and also “orthogonal” in the sense that the product of any one with the complex conjugate of another is zero when integrated over all space. We will then denote the values of \(E \), which we have interpreted as the energy associated with that state, by \(e_j \).

Then solutions to the Schrödinger equation are written as linear combinations of stationary states

\[
\psi(r, t) = \sum_j a_j \phi_j(r) e^{-i e_j t / \hbar} \tag{10.7}
\]

where \(a_j \) are known as expansion coefficients, and may be complex. If the wave function \(\psi(r, t) \) is normalized then it is easily shown that

\[
1 = \sum_j |a_j|^2 \tag{10.8}
\]

and that the energy associated with the function can be written in terms of the \(e_j \) as

\[
\sum_j e_j |a_j|^2 \tag{10.9}
\]

From these relationships we observe that \(|a_j|^2 \) behaves like a probability distribution over the events consisting of the various states being occupied, and that this distribution can be used to calculate the average energy associated with the object.

10.4 Multi-State Model

Our brief excursion into quantum mechanics in the past two sections justifies the multi-state model given next. Those readers who were willing to accept this model without any explanation have skipped over the past two sections and are rejoining us now.

Our model of a physical object, justified by the brief discussion of quantum mechanics in the previous two sections, is as follows. The object has a wave function \(\psi \) which, in principle, characterizes its behavior over time. This wave function may be difficult or impossible to calculate, and it can change, perhaps in unpredictable ways, when the object interacts with its environment.

The object has a finite (or perhaps countable infinite) number of “stationary states” that are easier to calculate (though for complicated objects finding them may still be impossible). Each of the stationary states has its own wave function \(\psi_j \) where \(j \) is an index over the stationary states. If the actual wave function is one of these stationary states (i.e., if this state is “occupied”) then the object stays in that state indefinitely (or until it interacts with its environment). Each stationary state has its own energy \(e_j \) and possibly its own values of other physical quantities of interest.

The object’s wave function can be expressed as a linear combination of the stationary states, in the form

\[
\psi = \sum_j a_j \psi_j \tag{10.10}
\]

where the \(a_j \) are complex numbers called expansion coefficients. If the object occupies one of the stationary states then all \(a_j \) are 0 except one of them. Without loss of generality the expansion coefficients can be defined so that the sum of their magnitudes squared is one:

\[
1 = \sum_j |a_j|^2 \tag{10.11}
\]

Measurement of an object’s property, such as its energy, involves an interaction with the object’s environment, and a change in the environment (if for no other reason than to record the answer). It is a consequence
of quantum mechanics that if the object is in one of its stationary states and its energy is measured, then
the result of the measurement is simply the energy of that state, and the state does not change (i.e., the
expansion coefficients, all of which are 0 except one, are not changed by the measurement). On the other
hand, if the object is not in one of the stationary states, then the result of the measurement is the energy
of one of the stationary states, and the object immediately assumes that stationary state. Thus after each
measurement the object ends up in a stationary state. Which state? The probability that state j is the one
selected is $|a_j|^2$. Thus the expected value of the energy measured by an experiment is

$$\sum_j e_j |a_j|^2$$ \hspace{1cm} (10.12)

where e_j is the energy associated with the stationary state j. Measurement in quantum mechanics is thus
not like measurement of everyday objects, where it is assumed that the energy or other physical properties
can be measured with arbitrary precision, and that such measurements need not perturb the object. The
nature of quantum measurement is one more of those aspects of quantum mechanics that must be accepted
even though it may not conform to intuition developed in everyday life.

10.4.1 Energy Systems

An object that stores, transmits, or converts energy must have possible states. Such an object typically
might consist of a large number (say Avogadro’s number $N_A = 6.02 \times 10^{23}$) of similar or identical particles
and therefore a huge number of stationary states. The Schrödinger equation cannot be solved in such
circumstances. Interactions with the environment would occur often in order to transfer energy to and from
the environment. It is impossible to know whether the system is in a stationary state, and even if it is
known, unpredictable interactions with the environment make such knowledge irrelevant rapidly.

The most that can be done with such systems is to deal with the probabilities p_j of occupancy of the
various stationary states

$$p_j = |a_j|^2$$ \hspace{1cm} (10.13)

The expected value of the energy E would then be

$$E = \sum_j e_j p_j$$ \hspace{1cm} (10.14)

This model is set up in a way that is perfectly suited for the use of the Principle of Maximum Entropy to
estimate the occupation probability distribution p_j. This topic will be pursued in Chapter 11 of these notes.

10.4.2 Information Systems

An object intended to perform information storage, transmission, or processing should avoid errors caused
by unpredictable interactions with the environment. It would seem that the simplest such object that could
process information would need two states. One bit of information could be associated with the knowledge
of which state is occupied. More complex objects, with more than two states, could represent more than one
bit of information.

Quantum information systems, including computers and communication systems, will be the topic of
Chapter 13 of these notes.