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Problem 1: Vegetables

At Nerd’s Nest, the trendy new cafe on campus, there are 8 vegetables on the menu. Patrons place an order
by sending a three-bit signal to the kitchen.

Unfortunately, on any order one of the bits might be changed and as a result the wrong vegetable is
served. You have been asked to design a communication system that will be more robust by providing
single-error correction.
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Figure 4–1: Triangular code

You first think of using a rectangular code. The bits would be thought of as in a 3 x 1 rectangle, and 5
parity bits would be needed. That would work but it uses too many bits. So you invent a new triangular
code. You think of the three data bits d0, d1, and d2 as forming a triangle and then add three parity bits,
one between each pair of data bits. You call the three parity bits p0, p1, and p2, and put them on the
triangle as shown in figure 4–1. Then you define each to get even parity on each leg of the triangle, for
example,

t2 = d0⊕ p2⊕ d1 = 0

Then for each vegetable selection, six bits are transmitted, in the order d0, d1, d2, p0, p1, p2. The chefs
want to know whether the system will actually work. To convince them:

a. Give Boolean formulas for p0, p1, and p2 in terms of d0, d1, and d2.

b. Construct the valid codewords for each of the 8 vegetables, by filling in the table 4–1:

c. Find the minimum Hamming Distance between any two valid codewords. What minimum Ham-
ming Distance is needed for single-error correction?

d. Denote as t0 the result of the parity test performed in the kitchen on the incoming bits involving
p0 (and similarly t1 and t2). Describe in words, formulas, or an algorithm how the decoder
determines whether an error has occurred, and if it has, how to correct the data bits.

e. Demonstrate that your procedure works properly in the three cases of

1. no error

2. an error in a data bit

3. an error in a parity bit
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d0 d1 d2 p0 p1 p2 Vegetable
0 0 0 Asparagus
0 0 1 Broccoli
0 1 0 Corn
0 1 1 Lima Beans
1 0 0 Peas
1 0 1 Spinach
1 1 0 Tomatoes
1 1 1 Zucchini

Table 4–1: Template for codeword table

f. (Extra credit) The system was built, and seems to work well. However, one day during an
extreme thunderstorm, the following bit pattern was received in the kitchen: 1 1 1 1 1 1. Is this
a valid codeword? Is it Hamming Distance 1 from a valid code word? What does your system
do?

Problem 2: Too Much Caffeine

Your boss has designed a (5, 2, 3) code for 2-bit chunks of data (k = 2) that uses 5-bit code words (n = 5)
and has minimum Hamming distance 3 (d = 3). The first two bits of each code word are the data bits being
coded; the other three are added for error protection. Unfortunately, you spilled coffee on her notebook
and destroyed part of the codebook (the part shown with question marks below). You must reconstruct a
suitable code.

Input Codebook
0 0 0 0 ? ? ?
0 1 0 1 0 1 ?
1 0 1 0 ? ? ?
1 1 1 ? ? ? ?

Table 4–1: Your boss’s Codebook, as inconveniently transformed by your coffee

a. There are many ways to implement a code of this sort. Find one of them and complete the
codebook showing the codes for each of the four input strings.

b. Of the 32 possible bit strings the decoder might encounter, how many are legal codes?

c. Some of these 32 have Hamming distance one from a legal code and may therefore be corrected to
the nearest legal value under the assumption they were produced by a single error. How many?

d. Still others have a Hamming distance greater than one from any legal code, and therefore can
only be produced by multiple errors. How many?

e. Your boss thinks it costs more to transmit a 1 than a 0. Does your codebook have more 1 entries
than necessary?
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Laboratory Experiment

This experiment will take you into the world of linear codes used to protect transmitted data from errors
caused by noise in the environment. Such codes are actively used in space transmissions, cellular phones,
and CD players. These codes are applied to blocks of k bits of a message to yield n bits to be transmitted,
with a minimum Hamming distance between legal codes of d. We refer to these codes as (n, k, d) linear codes
or sometimes simply as (n, k) codes.

The encoder receives k bits to be transmitted and adds n−k bits of parity defined by rules expressed in a
generator matrix G. The block of n bits is then sent through some medium, e.g. air, floppy disk, etc., where
it may encounter noise which produces errors. When the decoder receives the block of n bits it strips off the
n− k bits of parity leaving the k bits of the message. But before discarding the parity bits, the decoder uses
them to correct any errors it finds. The number of errors that can be detected or corrected depends on the
linear codes used to generate the parity bits. The decoder uses a parity-check matrix H.

Consider the (7, 4, 3) Hamming code: 4 bits for the message and 3 bits for the parity codes totaling up
to 7 bits. The following is one possible generator matrix G and the corresponding parity check matrix H.

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 (4–1)

Message Parity
Bits 1 2 3 4 5 6 7

Parity 1 x x x x
Parity 2 x x x x
Parity 3 x x x x

Table 4–2: Parity

Table 4–2 is based on the matrix H but labels the first four bits as message and the rest as parity.
These codes are called linear codes because the operations are done by matrix multiplication (a special

form that uses XOR operations in place of normal arithmetic multiplication and addition). Let’s multiply
the matrix G by the four-bit message A to produce a seven-bit codeword:

>> A = [1 1 0 1];
>> B = A*G
B =
1 1 0 1 2 2 3

Oops. Note that this is not what we want for the 7-bit codeword. MATLAB did conventional matrix
multiplication. We have to change all even values to 0 and odd values to 1 to get what we want, [1 1 0 1
0 0 1]. This can be done several ways, for example by using mod-2 remainders

>> B = mod(B, 2)
B =
1 1 0 1 0 0 1

Notice that in B the first 4 bits are A and the last 3 bits are the parity. This is because our generator
G matrix has this property (the first four columns of G form an identity matrix). There are other generator
matrices that still yield a (7, 4, 3) Hamming code but place the bits of the original message in other positions.

The matrix H is used by the decoder to discover any errors:



Problem Set 4 4

>> C = mod(B*H’, 2)
C =
0 0 0

where the apostrophe is the symbol reserved by MATLAB for matrix transpose; in mathematical formulae
we use a superscript T to indicate matrix transpose (the matrix formed by flipping a matrix about its main
diagonal – H is a 3× 7 matrix and HT is a 7× 3 matrix). The fact that C is entirely 0 means there were no
errors to correct, so the decoder simply strips off the parity bits. Now let us assume that an error has occurred
in bit position 3 so the decoder receives the message as [1 1 1 1 0 0 1] rather than [1 1 0 1 0 0 1].
Now,

>> B(3) = ~B(3);
>> C = mod(B*H’, 2)
C =
0 1 1

Due to our choice of H, the result [0 1 1] tells us directly the position of the error: 011 translates
to decimal 3; the bit position of the error.

Use MATLAB to reproduce these results and try one or two other messages. Then you will be ready for
Problem 3. Do not include this lab experiment as part of what you turn in.

Hint: you can define a matrix like G by something like G = [1 0 0 0 0 1 1; 0 1 0 0 1 0 1;...]

Problem 3: A Different Hamming Code

There are many possible Hamming code generator matrices G and corresponding decode matrices H. The
example in the laboratory experiment above had the useful property that the binary representation of the
location of the error is the result of using the H matrix. This property was a result of the fact that H was
made of columns with these binary representations in order.

In a more general case, (see Error Correction with Hamming Codes) the bit pattern produced by multi-
plying the received code word by H can be compared with the columns of H, and the location of the fault
inferred by which column if any is matched. For this problem use these alternate matrices (different from
the matrices used in the Laboratory Experiment above):

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

H =

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (4–1)

Hint: It is easiest to do this problem using MATLAB, but if you prefer you can use paper and pencil.
If you do use MATLAB, put your code in the file ps3p2.m and all your comments in your diary named
ps3diary.

a. Generate a test pattern PATTERN which consists of all possible four-bit messages. Make this
in the form of a matrix with four columns and 16 rows.

b. Generate the “codebook” which is a matrix containing in each row the seven-bit codeword from
the corresponding row of PATTERN. You can get this with a single matrix multiplication followed
by the mod operation. Call this matrix CODEBOOK.

c. How many errors can the decoder using the matrix H correct? How many errors can it detect if
it does no corrections?
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d. Verify that this (7, 4, 3) Hamming code works by using it to transmit and receive 3 messages of
your choice, without errors. In this context, “transmit and receive” means select a four-bit word,
find its codebook entry by using the matrix G, check it for errors using the matrix H, and if
necessary make corrections.

e. Repeat with the same messages but this time introduce one error in each message and verify that
the use of the matrix H reveals the location of the error (remember that to identify which bit is
at fault you compare with the columns of H). In one of these cases make the error happen in a
parity bit.

f. Using one of these messages, introduce two errors and see what the decoder does. Compare the
original message with the “corrected” one.

g. (Extra credit) The three bits obtained with the check matrix H are often termed syndrome. The
syndromes indicate which bit has been flipped (assuming one and only one error has occurred).
Given our choice of H, construct a table that associates each syndrome with the bit it indicates.
And compare your result to the matrix H and the last 3 columns of G, how are they all related?

h. (Extra credit) The previous version of this problem set contained a typo in the matrix H, the
element (3, 4) was 0 when it should have been 1. Give two ways in which you can verify that
it was a typo. (Hint: the matrices H and G do share some structure. The previous extra credit
question may also shine some light there.)

Turning in Your Solutions

If you used MATLAB, you should have M-files and a diary. You may turn in this problem set by e-mailing
your M-files and diary to 6.050-submit@mit.edu. Do this either by attaching them to the e-mail as text files,
or by pasting their content directly into the body of the e-mail (if you do the latter, please indicate clearly
where each file begins and ends). Alternatively, you may turn in your solutions on paper in room 38-344.
The deadline for submission is the same no matter which option you choose.

Your solutions are due 5:00 PM on Friday, February 25, 2004. Later that day, solutions will be posted
on the course website.


