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Problem 1: Who’s Who (14%)

For each statement, fill in a name from the box that most closely matches. There are no repeated answers.

Avogadro Bayes Boltzmann Boole Carnot Gibbs Hamming
Huffman Jaynes Joule Kelvin Kraft Lempel Maxwell
Morse Reed Schrödinger Shannon Solomon Welsh Ziv

a. , a 19-th century physicist, has a unit of temperature named after him.

b. Reportedly secluded himself in his mountain cabin, with pearls in his ears to muffle the
sound, and his girlfriend in his bed to inspire him, and came up with an equation to calculate the wave
function of a quantum system.

c. The measure of how much two bit strings of equal length differ is named after .

d. While an MIT student in the 1940s, invented a famous inequality for his master’s thesis.

e. was one of three engineers whose name is used for a lossless compression technique for
the popular GIF image format.

f. A famous inequality is named after , who received the first doctorate in engineering in
America, and later was on the faculty at Yale University.

g. The constant is approximately 1.38× 10−23 Joules per Kelvin.

h. The military engineer showed that all reversible heat engines have the same efficiency.

i. The channel capacity theorem proved by states a possibility, not how to achieve it.

j. The algebra of binary numbers is named after the mathematician , who had been a child-
hood prodigy in Latin, publishing at the age of 12.

k. conceived a Demon to show the statistical nature of the Second Law of Thermodynamics.

l. promoted the Principle of Maximum Entropy as an unbiased way of assigning probabilities.

m. During an ocean journey heard that electricity could be transmitted instantaneously, and
in a fit of creativity invented a code to use it to transmit arbitrary information.

n. Over one weekend solved a problem posed in a problem set for an MIT graduate subject,

thereby inventing the shortest possible variable length code.
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Problem 2: Under Control (5%)

Your company has just purchased a large number of C −NOT (controlled-not) logic gates which are really
just XOR (exclusive or) gates with an extra output. They have two inputs A and B and two outputs C and
D . One output, C, is merely a copy of A, and the other output is B if A = 0 or NOTB if A = 1. In other
words, the output D is B possibly run through a NOT gate depending on the input A. Your boss wants
you to design all your circuits using only C −NOT gates, so the company can save the cost of maintaining
different components in its inventory. You wonder about the properties of this gate.

You start off by modeling the gate in terms of its transition probabilities, AB CD
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and noting some basic properties.
You know that a gate is reversible if its input can be inferred exactly from

its output. Since you know nothing about how the gate might be used, you
assume the four possible input combinations are equally probable.

a. In the diagram at the right, show the transition probabilities.

b. What is the input information in bits?

c. What is the output information in bits?

d. What is the loss in bits?

e. What is the noise in bits?

f. What is the mutual information in bits?

g. Is this gate reversible (yes or no)?

Problem 3: Out of Control (5%)

You have concluded that the C − NOT gate from Problem 2 will not sat- AB CD
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isfy your needs, and look around for another. The incoming inspector tells
you that some of the gates don’t work right, and calls them NOT−C−NOT
gates. They behave like C−NOT gates except that they have a defective power
supply which keeps the C output from being 1 when D = 1 even though the
C −NOT logic might call for them both to be 1 . This inspector thinks these
gates are worthless but asks you want you think. You repeat your analysis
for this gate, again assuming the four possible input combinations are equally
probable.

a. In the diagram at the right, show the transition probabilities.

b. What is the input information in bits?

c. What is the output information in bits?

d. What is the loss in bits?

e. What is the noise in bits?

f. What is the mutual information in bits?

g. Is this gate reversible (yes or no)?
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Problem 4: MIT Customer Complaint Department (15%)

You have recently been elected President of the UA, and it is your job to transmit student complaints to MIT
President Susan Hockfield so they (hopefully) can be addressed rapidly. According to the UA’s research, all
student complaints fall into one of six categories, with percentages shown:

% Complaint
50% Not enough homework
30% Campus dining options too diverse
10% Tuition too low
5% Administration too attentive
5% Classes too easy

Unfortunately, Hockfield doesn’t have much time, so she instructs you to only send very short messages to
her. Because you’ve taken 6.050 you know about coding schemes, so you decide to encode the complaints
above in a Huffman code.

a. Design a Huffman code for the complaints above.

Complaint Code
Not enough homework

Campus dining options too diverse
Tuition too low

Administration too attentive
Classes too easy

b. What is the average number of bits to send one complaint?

Average # of bits/complaint:
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Problem 5: Zero Power Cooler (30%)

Having landed a high-paying job in Boston, you decide to build a new house for yourself. You vow to use
only energy-efficient techniques, based on what you know about information and entropy. Of course your
house needs heating in the winter, cooling in the summer, and beverage refrigeration all year long. You
decide to design a device that cools the beverage storage room without requiring any work and therefore no
electricity bill.

Of course you are familiar with the Carnot efficiency results for reversible heat exchangers. You know
that ordinarily heat engines, heat pumps, and refrigerators operate between two reservoirs at two different
temperatures, and either produce or require work. But in your case you have reservoirs at three different
temperatures (storage room, house, and outside). You wonder whether a reversible heat exchange system
could take heat out of the storage room and either put heat into or take heat from the other two reservoirs,
with no work.

a. First consider the winter. Model the outside environment as a large heat reservoir at 275K
(about 2oC or 35oF ). You want your house to be at 295K (about 22oC or 72oF ) and the storage
room at 280K (about 7oC or 44oF ).

Is such a system possible, at least in principle? Or would it violate the Second Law of Thermo-
dynamics?

If it is possible, give the heat that would be exchanged with each of the three reservoirs if 1
Joule of heat is taken from the storage room at 280K. If it is not possible, briefly explain why.

b. Next, consider the summer, when the outside temperature is 300K (about 27oC or 80oF ). The
house and storage room temperatures are the same as for the winter, namely 295K and 280K.
You wonder whether a reversible heat exchange system can be designed to take energy out of the
storage area without requiring any work.

Is such a system possible, at least in principle? Or would it violate the Second Law of Thermo-
dynamics?

If it is possible, give the heat that would be exchanged with each of the three reservoirs if 1 Joule
of heat is taken from the refrigerator at 280K. It is is not possible, briefly explain why.
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Problem 6: Casino (20%)

On your vacation you find yourself in a gambling casino that caters to nerds. One of the games catches your
attention because you wonder about the probabilities. In this game, you pay a nickel (5 cents) to play, and
then a coin is chosen at random from a big jar and given to you. The jar contains pennies (worth 1 cent),
nickels (5 cents), and quarters (25 cents). This game, unlike slot machines, has some payout each time you
play. You ask the owner of the casino about the probabilities P, N, and Q of the three coins (penny, nickel,
and quarter) being selected, but the only information he gives you is that the average payout is 4 cents per
play. You notice that the jar is so large that P, N, and Q remain the same all day long.

a. What values of P, N, and Q (nonnegative, no larger than 1) are possible?

PMin

≤ P ≤
PMax NMin

≤ N ≤
NMax QMin

≤ Q ≤
QMax

b. You decide to estimate P, N, and Q using the Principle of Maximum Entropy (if the owner made
this choice it would be exciting to nerd customers, because they would gain the most information
when learning which coin is chosen). (b) Start this estimate by eliminating P and N and writing
the entropy (your uncertainty about the coin to be selected) as a function of Q:

Entropy =

Without a calculator you can’t find the maximum of this expression, so instead you guess that it is about
0.5 bits.

Then you realize that the owner need not stock the jar using maximum entropy. He could set the
probabilities so as to maximize the number of quarters paid out, while still keeping an average payout of 4
cents (this choice would be exciting to non-nerd customers hoping to strike it rich).

c. With this strategy, what are P, N, Q, and the entropy (to two decimal places)?

P = , N = , Q = , Entropy = .

d. Was your earlier quick guess for the entropy (when you thought the Principle of Maximum
Entropy was used by the owner) a good one? Explain your answer.

e. (Extra credit) Another strategy for the owner would be to stock the jar with no quarters at
all, so Q = 0 (this choice would appeal only to nerd customers). For this strategy, what are P,
N, Q, and the entropy (to two decimal places)?

P = , N = , Q = , Entropy = .
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Problem 7: The Telephone Game (30%)

The “Telephone Game” illustrates how correct information gets converted into false rumors. In the game
one person (Alice) sends a message to another (Bob) through a chain of humans, each of whom potentially
corrupts the message. Thus Alice tells person #1, who then tells person #2, and so on until the last person
in the chain tells Bob. Then Bob and Alice announce their versions of the message, normally accompanied
by amazement at how different they are.

Consider the case where a single bit is being passed and each person in the chain has a 20% probability of
passing on a bit different from the one she received. Thus we model each person in the chain as a symmetric
binary channel as shown in Figure 1.
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Figure 1: Simple model of a person

The game is being demonstrated for you at a party one day. Alice and Bob take their positions at
opposite ends of the chain, and Alice whispers the value of x0 to person #1. You know that person #1,
like the other members of the chain, has a 20% probability of changing the bit she hears. Parts a. and b.
concern the model for this person, and parts c. and d. concern the behavior of the chain.

a. At first, you do not know what Alice has told person #1. Naturally, you express your state of
knowledge in terms of the two probabilities p(x0 = 0) and p(x0 = 1). To avoid any unintended
bias you use the Principle of Maximum Entropy to conclude that each of these probabilities
is equal to 0.5. Then you calculate your uncertainty I0 about the value of x0, the output
probabilities p(x1 = 0) and p(x1 = 1), and your uncertainty I1 about the value of x1. Then you
calculate the channel noise N , channel loss L, and mutual information M , all in bits:

p(x0 = 0) = 0.5 p(x0 = 1) = 0.5 I0 = bits

p(x1 = 0) = p(x1 = 1) = I1 = bits

N = L = M =
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Next, consider the behavior of a cascade of independent identical channels representing the individuals
passing the message, as illustrated in Figure 2. Let xk represent the output of the k-th channel.
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Figure 2: Simple model of the telephone game

b. Now suppose that you know that Alice’s bit is 0, so that x0 = 0. Having just calculated proba-
bilities for x1, you wonder how much you know about the other values, x2, x3, x4, . . .xk . . . . Is
it true that p(xk = 0) > 0.5 for every channel output xk? In other words, is every value passed
along more likely to be 0 than 1? Write a paragraph defending your conclusion. If possible,
make this an outline of a proof. You may find some version of the principle of induction helpful.
(Pictures and equations are allowed in the paragraph, if needed.)
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c. You conclude (correctly) that p(xk = 0) decreases as the message moves along the chain, i.e.,

p(x0 = 0) > p(x1 = 0) > p(x2 = 0) > . . . > p(xk = 0) > p(xk+1 = 0) > . . . (1)

Let Ik be your uncertainty about xk in bits. Does the uncertainty about xk increase as you move
through successive channels? In other words, is the following sequence of inequalities true?

I0 < I1 < I2 < . . . < Ik < Ik+1 < . . . (2)

Write a paragraph defending your answer.



Logarithm and Entropy Table

This page is provided so that you may rip it off the exam to use as a separate reference table. In Table 1,
the entropy S = p log2(1/p) + (1− p) log2(1/(1− p)).

p 1/8 1/5 1/4 3/10 1/3 3/8 2/5 1/2 3/5 5/8 2/3 7/10 3/4 4/5 7/8
log2(1/p) 3.00 2.32 2.00 1.74 1.58 1.42 1.32 1.00 0.74 0.68 0.58 0.51 0.42 0.32 0.18

S 0.54 0.72 0.81 0.88 0.92 0.95 0.97 1.00 0.97 0.95 0.92 0.88 0.81 0.72 0.54

Table 1: Table of logarithms in base 2 and entropy in bits
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