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I. The Geometric Idea Behind Lagrange Multipliers
Example 1

Suppose a bead is allowed to slide along a smooth curved wire
under the influence of gravity until it comes to rest as is shown in
fig. 1. The only possible rest points are points where the wire is
parallel to the ground, i.e., the interval a and the points b, ¢, d, and
e. These are precisely the points where the wire (i.e., the constraint
set C) 1s perpendicular to the downward force f; the gradient of the
gravitational potential ¢ = mgh . Thus the maximum and minimum
of ¢ pomts d and e, are both points at which f L C. The converse,

however does not hold, since fis also perpendicular to C on the
interval q at the points b and ¢, which are not global maxima or
minima for ¢ .
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The Gradient of a Scalar Function

Let
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represent position in n-dimensional space, and ¢(x) be a scalar
function of x. For example
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could be the temperature at a point X =| , | in the classroom.
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Similarly
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could be a vector of probabilities, and
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could be the entropy of that set of probabilities.

At any point X, the gradient of ¢ at x, is the vector

o9 ;.
g);l‘(x)
24 |

o>

b .
5 (%)

This can be visualized as a vector with its tail at % pointing in the
direction of steepest increase of 4.

For example, if you are skiing on a mountain with elevation

h(x,x,), at any point £ the negative gradient of A, (-Vh(%)) points
in the direction of steepest descent (the “fall line””) down the
mountain from x. -



Example 2

Find the point on the unit circle which maximizes d(x,y)=x+y.
The result may be seen from inspection of fig. 2; x*= (\/2/ 242/ 2) :

- The unit circle is the constraint set C, and the vector field V¢ is
sketched in fig. 2. Notice that V¢ is perpendicular to C, atx* and
also at the point -x*, which minimizes 4.
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Geometric Principle of Lagrange Multipliers

Suppose we wish to find the maximum of a scalar function ¢(x)
subject to the constraint that the point x must lie in a given smooth
curve or surface, C, in the space. If x* is the point in C at which
the maximum occurs, then it can be seen that V¢, the gradient of

¢ , must be perpendicular to C at x*. For if any component of V¢
were parallel to C at x*, we could move away from x* and up the
gradient of ¢ while remaining on C, contrary to the assumption
that this point was a maximum. Note that V¢ 1 C is a necessary but
not sufficient condition for a maximum.



Since maximizing ¢ is the same as minimizing —¢, and since
V¢ LC is equivalent to V(-4) L C, it follows that the minimum of

¢ must also occur at a point where V¢ L C.

Example 3

Let C be a surface in 3-dimensional space. We want to find the
maximum value attained by ¢ on C. A possible vector field V@ is
sketched in fig. 3, and this allows us to look for possible maxima.

This could be the
moximun_r point
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IL. Turning the Geometric Principle into a Calculation —
Surfaces Defined by Constraints

For a surface defined by a constraint given by a scalar function g,
g(x)=G,

a normal vector to the surface at any point % in the surface (i.e., %
satisfying g (¥)=G) is given by

Ve(%)
Example 4

The unit sphere centered at the origin in 3- space is the set of points
satlsfymg the constraint ,

gl(x,y,z)=x2+y2+zz-—1:0 |

See fig. 4.

The normal to the sphere at the point (x,y,z) = (1,0,0) is just the set
of all vectors of the form A-Vg, (1,0,0)=1+(2,0,0), where the

quantity A4 is any scalar constant. It is the set of all vectors with
tails at (1,0,0) which are perpendicular to the sphere. In this
example it is the x axis itself.
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Definition

In n-dimentional space let C be the (n-k) dimensional surface
consisting of all x that satisfy all k£ constraint equations

g (x)=G
8> (x) G,

—

Il

&k (x) G,

Atany point X & C (ie., &(%)=G, g,(%)=G,,-, g,(¥)=G,) the
normal space to C at X consists of all vectors (with their tails at

X ) that are linear combinations of Vg, (%), Vg, (%), Vg, ().

In other words, a vector v with its tail at X is normal to C <

V=24V (%) +4,Ve, (%) +-+ 4, Vg, (%).



Example 5
The unit circle lying in the x-y plane in 3-space is the set of points

satisfying

gl(x,y,z)=x2 +y2+22—1:0
g (%,y,2)=2=0
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Exercise

Find the normal space to the unit circle defined above at the point

o>
f
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I
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Describe the normal space geometrically. Find the gradients of g,

and g, at X and give a formula for all points in the normal space
in terms of Vg, and Vg,.



III. Lagrange Multiplier Theorem®

The maximum value of ¢(x) subject to the constraints that

& (x) = Gl
&> (x) =G,
Er (x) =G,

if such a value exists, must occur at a point x* in C such that
k
Vé(x*)=2 4 Ve, (x*)
Jj=1

- is satisfied for some value of A,...,A, . The 4’s are called
Lagrange multipliers. -

' The technical assumptions are that ¢(x) and g;(x),j=12,...,k <n, are defined
and continuously differentiable on an open set in #-dimensional Euclidean space. We
further assume that at each point where g, =G,,-*,g, = G,, Vg,.,Vg,, -, Vg, are
linearly independent.



IV Maximizing the Entropy Subject to a Linear
Constraint

We will often use Lagrange multipliers to solve the following type
of problem:

n meWA)

Maximize H(p)=).p log(l/pj) n2

J=1

subject to the constraints®
= Z p;=1
j=l

=P8, =
j=1
We can simplify the algebra slightly by maximizing instead
A(p)=2pn(l/p,)
=

To find the various gradients, note that

? The third constraint, each p j = 0, turns out to be automatically satisfied in this class of
problems and does not need to be handled separately. (We are very lucky!)
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The Lagrange multiplier equations tell us that the vector p* of the
probabilities that maximizes H subject to the two linear constraints

must satisfy
VH (p*)=aVg,(p*)+ Vg, (p*)
g (p*)=1

g, (p*)=G,

or, more concretely

]n(l/p;)+1=a+ﬁgj, Jj=1-,n |

2. =1
Jj=1

D.8.0,=G
m=1

The first equation tells us

(D)
2
3)
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2’)

(37
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- We can guarantee the second equation (2°) is satisfied by defining

. el——a e~ﬁg,- e—ﬂgj

P =

L by, ;
Seets 3ot
j=1 J=1

b

which eliminates « . The remaining unknown is 8, which must be
chosen to satisfy the third equation (3°)

i g, e—ﬂgm
m=1

n
St
J=1

=G,

1.e.,

3 (g, -G 0.

m=1

This equation must be solved numerically in most cases.

Additional Justification for Using Maximum Entropy

We use the maximum entropy method to estimate probabilities
when we have insufficient data to determine them accurately. The
justification has been that the maximum entropy distribution,
subject to whatever constraints are known, introduces no |
unjustified bias or constraint. A second justification comes from
this important example due to Boltzmann.
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Dice Example

Suppose » independent fair 6-sided dice are thrown in sequence.
Given that the total number of spots showing is na (1< a<6), find

a rational basis for estimating the proportion of dice showing face
i, i=1,2,---6, for large n.

Approach 1: Maximum Entropy

Suppose #; tosses yield 1 spot, ..., % tosses yield 6 spots, with
nm+n,+-+n, =n.

Then if a toss is chosen at random, the probability it will have i
spots showing is

i

pPi=—
n

The constraint on the set of outcomes is
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1.e.,

6
Zipl. =a.
i=1

According to the maximum entropy approach we maximize

6
H = Z D; log_l_
i=1 D;

subject to the constraints

6
2in=a
i=1

np; an integer, i=1,---,6.

If we ignore the last constraint, this becomes our most standard
Lagrange multiplier problem, with solution

with g chosen so that
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Approach 2: Finding Most Likely Values of #;,...,%;

Note that for independent fair dice, all sequences of outcomes are
B . } 1 n
equally probable, with probability (g) . For any specific numbers

of tosses ;5. .., Mg showing 1,..., 6 spots, the number of possible
sequences is .

( n ) n!
B Hysohg ) mylnyIngtng Ingng

~ Therefore p(nl,nz,---,n6) is proportional to this quantity, and the
value of 7;,..., s that maximizes it, subject to the constraints
S =n
i=1
n
| Zz’ n, =na
i=1

is the most probable. This quantity is hard to manage, but using the
crude Stirling’s approximation for large n,

we have
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To put this into a more familiar form, as before let

_n
p;, =
n

and note that

6
n
iH—(pl,f--,pt;) Ezpi hl(l/Pi):
eh’lz — e i=1

1
6 1 np; \In2 6 n n; E
1| — =\oj— |,
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which has a maximum wherever the entropy has a maximum.

SO
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Conclusion

For large n, maximizing the entropy of a set of probabilities

(P pm) subject to any set of constraints is approximately

equivalent, for large 7, to maximizing the probability of
A .
n,=np, 1<i<m

outcomes of type i in a sequence of # independent trials.
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