More on Inference

John Wyatt
3/31/04

=g

o
-

oo

=
st
o
N
N}
N
3
(%)

"
=
4
173

Assume process is modeled by conditional probabilities
€y = p(Bj | Ai)
and the prior probabilities

p; :p(Ai)

are known. We observe an output B, and use that observation to

make a decision as to what value 4 we think must have been the
input 4,. We typically formulate in advance a decision rule

i

4, =d(B)).



'The decision rule is based on the conditional probabilities or
transition probabilities €, the probabilities p, = p(4;) of the
various inputs, and the costs of making various errors.

Various decision rules are possible, depending on the
consequences of being wrong. In medical diagnosis, for example,

where inference in this process model is quite important, the 4,’s

could be various possible disease states including “no disease” and
the B,’s various possible outcomes of a set of laboratory tests. In

this field the consequences of asserting “no disease” when a patient
has a serious disease that responds well to early treatment are often
vastly greater than the consequences of concluding a disease is
suspected when the patient is well.

But in the simplest case we weight all errors equally, and this is
typically the case for communications channels. When all errors
are weighted equally, a good criterion for measuring performance
is the overall probability of error

p.=p(A# 4)=p{setofall (4,B,): 4 #d(B,)}

Given the ¢,’s and p,’s, different decision rules will lead to

different probabilities of error. It will come as no surprise that p,
is minimized by the simple decision rule

iszAP (Bj)

where i is the value of i that maximizes P (Ai | B ,-) . Just pick the

most likely A4;, given your observation.

This intuitively natural rule has the fancy (but logical) name
maximum a posteriori probability decision rule (MAP) because



one chooses the 4, with the maximal probability after the data B,
has arrived.

Example

Your friend the trickster has two biased coins, 4, and 4,. He pulls

out each of them with probability 4 . The probabilities of heads
and tails for the two coins are

| p(H) p(T)
A1 7 3
41 4 6

The trickster lets you observe two tosses and asks you to guess
which coin he tossed. Find the MAP decision rule that minimizes
your probability of error.

P(4 |HH)= 4, (HH) =
P(A,Z IHH)= MAP -
P(4 |HT)= 0. (HT)=
P(A2 |HT) — MAP -
P(A1 ITH)= B
P(A2|TH)= dMAP(TH)"'
P(41T)= dMAP(TT):

P(4,|TT)=



Notice that this entire system can be written as a cascade of
individual processes:

<< o

<
N
O 0
A N
Z
P o N
R
\\
SRS
/\;\
7




What Role Do Information, Noise and Loss Play Here?
N ors e

I'\V\ Jout
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\E/ Loss
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If L =0, then M =1, and intuitively it seems we should be able to
make perfect decisions with p, =0.

L= p(8,)X p(48,)log————
; (,)Z (412 (p(418)))

L:O:>ZZp(Ai IBj)logm=O, all j with p(B,)>0=>

conditional entropy = 0 for each possible B, =

for each B;,
p(Al. ]Bj) =1 for some i

p(Aj. |BJ.) = 0 for all other i



You can exactly determine the input from the output and thus

make perfect decisions. With L = 0, noise input N doesn’t interfere
with perfect inference.
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At the other extreme, if L=1,,,

-L= Zp log

S5 p(4, )Iog-;(;j,—ﬁ

i1y

ZZP(Az»B )——ZZP(A,,B Jlog———— o

AIB)

(94,~|B,.)
Z;p(Awa)logpp(Ai) -

p(4:5))
AT

Z;P(fi,Bj)logp(Ai)Ip(Bj) _Z;p(/ji,]}j)log

p(Af’Bf):

But the Gibbs inequality says this difference is positive unless



1.€.,
L =1 = output B and input 4 are independent

In this case observing the output adds no useful information, and
the optimum decision rule ignores the B, ’s and always chooses 4,
to- maximize the input probability p(4), i.e., it chooses the most
likely input without regard to the output that may have occurred.

But what about the intermediate cases where

O<L<I, 9

While one intuitively expects 2, to generally rise as L riseis, p, for
the optimal (MAP) decision rule cannot be found in the general
case from knowledge of L (or even of L, I,, and N) alone.

Nonetheless an important relationship between P, and L was found

by Robert Fano, an emeritus professor of EECS at MIT. This
bound plays an important role in the proof that transmission at
rates beyond channel capacity has to produce errors. A key
variable will be the entropy of the error

1 1
H,=p,log—+(1-p,)log
§ p. (i-r.) (I-p,)




‘The Fano Bound (Two Input Case, M=2)
For every deterministic decision decision rule 4. =d ('B j)

H_>L
Lets examine graphically what this means. Note that in general

0<L<I

O0<H,<1bit
and for our case with two inputs

I, <1bit.



APPENDIX

The Fano Bound

For any process (i.e., memoryless channel) with A inputs 4, and N

outputs B, and any decision rule A =d (Bj )
H, +pelog(M—1) > L

Note that this reduces to the version in the lecture for M =2. A
simpler but looser bound that is useful for large M can be found by
noticing that

H, <1

log(M —1)<logM,

which gives

1+p,logM 2 L,
1e.,
S L-1
Pe = log M
Proof

For simplicity of notation, let Z =1-p,.

H,+p,log(M-1)=p, log—1—+:5;10g;+pe log(M -1)=



D. logw+p_810g;
p. P.

L :ZZp(A.,Bj)log

p(41B;)

We now consider separately the cases of no errors, where

4, =d (B ! ) ,and of errors 4, #d (B j) for the decision rule d, noting
that

pP.= ‘?? p(Ai,Bj)

A,-;éd(Bj)

Hy+p,log(M-1)=

> p(4,.B,)log p‘ +§p(d(3j),3j)1ogpé
4d(B)) e e
Similarly,
' 1 1
L= X% p(4,B)1 +2p(d(B,),B. )1
4:d{3j)p< i J) ogp(Al.[Bj) jp( ( J) J) 0 p(d(Bj)|B
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Subtracting the first expression from the second,

L—(H,+p,log(M-1))=

ZZ p(4,B,)log Pe +2p(d(B,).B,)log

Ai;d(éj) (M_i)p(Ai|Bj) / p(d(Bj)|Bj)

. -1
(since Inx <[x—1] and therefore log, x < %—2—)

4#d(B;)

El”z'{ 2 )H}Z;(ﬁ))“P(Aij)}r%(Zp(Bj)— p(d(5,

A,-;ed(Bj

since there are M — 1 values of 4, where 4, #d (Bj)

o (A N B

1.€.,

H,+p, log(M——l) > L.

ﬁ{ EZ P(Af’B"){(M_l)ze(A,.IB,-)_l}@p(d(Bj)’Bj)L(d(
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Note that the inequality becomes an equality only when
Inx =(x-1) in both sums, i.e., only in the symmetric case where
for all i and j,

p(418)= 42a(s)

p(4|B,)=p.. 4=d(B).

Of course the second equation follows from the first, since the
conditional probabilities must sum to 1.
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