
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Department of Mechanical Engineering

6.050J/2.110J Information and Entropy Spring 2004

Problem Set 5 Solutions

Solution to Problem 1: Meet the Box People

Solution to Problem 1, part a.

The probability that one of the box people’s offspring has different phenotypes is as follows:

i. An offspring has a circular phenotype unless s/he has genes cc. The probability of having cc is equal
to the probability that each parent transmits gene c, squared (because they are independent events).
Thus, this probability is 0.52 = 0.25 This means that the probability that the offspring has a circular
shape is 1 - 0.25 = 0.75.

ii. An offspring has a square phenotype when it inherits the recessive gene from both parents. Inheriting
a recessive gene from one parent occurs with a probability of 0.5, thus the probability of inheriting a
recessive gene from both parents is 0.52 = 0.25, as before.

iii. Using the same reasoning, we get that the probability of a blue phenotype is 0.25.

iv. Similarly, the probability of a red phenotype is 0.75.

Solution to Problem 0, part .

Bob has every reason to suspect that Ann has cheated on him. If he had sired their 5,000 children, statistically
one would expect that only a quarter of them would be red. To produce on average half red children with
Ann, the father would need to have both recessive red genes, or rr.

Solution to Problem 1, part c.

For Bob’s sets of children with Carol, one would expect 75% circular and 25% square. With Dorothy, one
would expect 50% circular and 50% square. With Cathy, 100% circular.

Solution to Problem 2: The Dreaded Triangle Transformation

We can draw a table of events as shown in Table 5–2.
We see that the probability that a person has the disease given that the test is positive, is:

0.001× 0.95
0.001× 0.95 + 0.999× 0.004

= 19.2% (5–2)

1



Problem Set 5 Solutions 2

Have Disease? Percent Test Results Percent Total
Yes 0.001 Positive 0.95 0.00095

Negative 0.05 0.00005
No 0.999 Positive 0.004 0.003996

Negative 0.996 0.95504

Table 5–2: Triangularity Test Results

Solution to Problem 3: Huffman Coding

Solution to Problem 3, part a.

To encode nine symbols we would need four bits, which would give us 24 = 16 different codewords. This
gives 4× 29 = 116 bits needed for transmission.

Solution to Problem 3, part b.

Table 5–3 lists the calculation of the average information per symbol. Here we calculate an average of 2.749
bits per symbol, or 80 bits.

Character Frequency log2

(
1
pi

)
pi log2

(
1
pi

)
a 27.59% 1.8576 0.5125
t 24.14% 2.0506 0.4950

space 13.79% 2.8582 0.3941
- 10.34% 3.2738 0.3385
s 10.34% 3.2738 0.3385
R 3.45% 4.8573 0.1676
e 3.45% 4.8573 0.1676
y 3.45% 4.8573 0.1676
h 3.45% 4.8573 0.1676

Total 100.00% 2.7490

Table 5–3: Frequency distribution of characters in “Rat-a-tat-tat as easy as that”

Solution to Problem 3, part c.

See Table 5–3.

Solution to Problem 3, part d.

A possible code is derived below and listed in Table 5–4.
Start: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (space=‘NA’ p = 0.1379) (‘-’=‘NA’ p = 0.1034) (s=‘NA’

p = 0.1034) (R=‘NA’ p = 0.0345) (e=‘NA’ p = 0.0345) (y=‘NA’ p = 0.0345) (h=‘NA’ p = 0.0345)

Next: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (space=‘NA’ p = 0.1379) (‘-’=‘NA’ p = 0.1034) (s=‘NA’
p = 0.1034) (R=‘NA’ p = 0.0345) (e=‘NA’ p = 0.0345) (y=‘0’, h=‘1’ p = 0.069)

Next: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (space=‘NA’ p = 0.1379) (‘-’=‘NA’ p = 0.1034) (s=‘NA’
p = 0.1034) (R=‘0’, e=‘1’ p = 0.069) (y=‘0’, h=‘1’ p = 0.069)



Problem Set 5 Solutions 3

Next: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (space=‘NA’ p = 0.1379) (‘-’=‘NA’ p = 0.1034) (s=‘NA’
p = 0.1034) (R=‘00’, e=‘01’, y=‘10’, h=‘11’ p = 0.138)

Next: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (space=‘NA’ p = 0.1379) (‘-’=‘0’, s=‘1’ p = 0.2068)
(R=‘00’, e=‘01’, y=‘10’, h=‘11’ p = 0.138)

Next: (a=‘NA’ p = 0.2759) (t=‘NA’ p = 0.2414) (‘-’=‘0’, s=‘1’ p = 0.2068) (space=‘0’, R=‘100’, e=‘101’,
y=‘110’, h=‘111’ p = 0.2759)

Next: (a=‘NA’ p = 0.2759) (t=‘0’, ‘-’=‘10’, s=‘11’ p = 0.4482) (space=‘0’, R=‘100’, e=‘101’, y=‘110’,
h=‘111’ p = 0.2759)

Next: (t=‘0’, ‘-’=‘10’, s=‘11’ p = 0.4482) (a=‘0’, space=‘10’, R=‘1100’, e=‘1101’, y=‘1110’, h=‘1111’
p = 0.5581)

Final: (t=‘00’, ‘-’=‘010’, s=‘011’, a=‘10’, space=‘110’, R=‘11100’, e=‘11101’, y=‘11110’, h=‘11111’
p = 1.00)

Character Code
a 10
t 00

space 110
- 010
s 011

R 11100
e 11101
y 11110
h 11111

Table 5–4: Huffman code for “Rat-a-tat-tat as easy as that”

Solution to Problem 3, part e.

When the sequence is encoded using the codebook derived in part d. . .

i. See Table 5–5.

Character # of Characters Bits per Character Bits Needed
a 8 2 16
t 7 2 14

space 4 3 12
- 3 3 9
s 3 3 9

R 1 5 5
e 1 5 5
y 1 5 5
h 1 5 5

Total 29 80

Table 5–5: Huffman code for “Rat-a-tat-tat as easy as that”



Problem Set 5 Solutions 4

ii. The fixed length code requires 116 bits, whereas Huffman coding requires 80 bits. So we find that the
Huffman code does a better job than the fixed length code.

iii. This number compares extremely well with the information content of 116 bits for the message as a
whole.

Solution to Problem 3, part f.

The original message is 29 bytes long, and with LZW we know from Problem Set 3 we can encode the
message using LZW in 34 bytes, with 22 characters in the dictionary. Thus we need 34+22=56 different
dictionary entries, for a total of six bits per byte. Thus we can compact the message down to 29× 6 = 174
characters. Straight encoding needs 116 bits, and Huffman encoding needs 80 bits. Thus Huffman encoding
does the best job of compacting the material.

A lower bound on sending the Huffman codebook is the number of bits in the code, total. This is equal to
2+2+3+3+3+5+5+5+5 = 34 bits. If we imagine that we need to send some control bits along, perhaps
it is something like five bits between each code (a reasonable estimate), this is an additional 5× (9+1) = 50
bits. So we have an lower-bound estimate of 84 bits.

Thus a fixed-length code requires 116 bits, LZW needs 174 bits, and Huffman coding with the transmission
of the codebook requires an estimated 164 bits.


