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In thermodynamic equilibrium, the probability distribution
will be the solution to the optimization problem:
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subject to the constraints
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Lagrange Multipliers for Physical Systems

We ignore the constraint p, >0 and will find that it
automatically is satisfied for this problem.

In order to make the Lagrange multipliers agree with those
in the lecture notes, we maximize instead
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Lagrange multipliers tell us the maximum will be found at
the point (or, in general, among the several points) where
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Evaluating the derivatives, for each value of j,
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Substituting (8), (9) and (10) into (7) gives, for each j,
—(lnpj+l)=06'+,3Ej (11)
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This gives the general form of the maximum entropy
solution. The remaining goal is to choose « and £ so that
both constraints (2) and (3) are satisfied.

Satisfying constraint (3) that the probabilities sum to 1 lets
us eliminate o :
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where p,* indicates the value of p, that maximizes the

entropy. The Lagrange multiplier method works and the
form of the solution is still valid if there are infinitely many
energy states, n — . Since the energies are all positive,
we see that with infinitely many energies we must have



B>0 so the probabilities can be normalized. In that case the
~ probability a given state is occupied shrinks exponentially
- with its energy. But with a finite number of energies it is
also possible to have g <o and for the probability a state is

occupied to grow exponentially with its energy. The
phenomenon, called population inversion, underlies the
operation of all lasers. |

A General Featuré of Lagrange Multipliers

A general geometric feature of the solution to Lagrange
multiplier problems will help us interpret 4. Lets begin
with a simple example:

Maximize ¢('x, ) (17)

subject to
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Lagrange multipliers tells us that the optimal solution will
be found at a point where, for some 4,
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Example
Maximize ¢(x,y)=x"+y>
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2x {1
ool
2y 2)
2x=41
2y =22,
1.€.,
y=2x
S=x+2y=x+4x=>5x
x*=1

y¥=2

(22)

(23)

24)

(25)

(26)




Sensitivity to Constraints

Suppose we alter the optimum solution

to some nearby point
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The nearby point might be a nonoptimal value, or it might
be the optimal solution subject to the altered value of the

constraint
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How do ¢ and g change as we move to the nearby point?

By the chain rule for calculus
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and |
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But by the principle of Lagrange multipliers,

Vp(x*, y*) = AVg (x*, y*), (33)
and therefore
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- Lagrange Multiplier Sensitivity Principle

For any small perturbation about the optimal solution to a
Lagrange multiplier problem with a single constraint
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Interpretation of S
Returning to our original problem

maximize $(p)=-3 p, Inp, (36)
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subject to
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at the optimum solution p* we have
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and therefore for any small perturbation to (p*+6p) we
have
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In particular, for any perturbation Sp such that p*+5p
-1s a valid probability distribution, i.e.,
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we have
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Recalling that our original goal was to maximize
S=kyo= _kBZ Py ln(pk)9 (45)
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for any such perturbation about p*,
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Looking ahead to a comparison with classical
thermodynamics, where temperature plays the role
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we anticipate that
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and therefore
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