
Chapter 1

Bits

Information is measured in bits, just as length is measured in meters and time is measured in seconds. Of
course knowing the amount of information, in bits, is not the same as knowing the information itself, what
it means, or what it implies. In these notes we will not consider the content or meaning of information, just
the quantity.

Different scales of length are needed in different circumstances. Sometimes we want to measure length
in kilometers, sometimes in inches, and sometimes in Ångströms. Similarly, other scales for information
besides bits are sometimes used; in the context of physical systems information is often measured in Joules
per Kelvin.

How is information quantified? Consider a situation or experiment that could have any of several possible
outcomes. Examples might be flipping a coin (2 outcomes, heads or tails) or selecting a card from a deck of
playing cards (52 possible outcomes). How compactly could one person (by convention often named Alice)
tell another person (Bob) the outcome of such an experiment or observation?

First consider the case of the two outcomes of flipping a coin, and let us suppose they are equally likely.
If Alice wants to tell Bob the result of the coin toss, she could use several possible techniques, but they
are all equivalent, in terms of the amount of information conveyed, to saying either “heads” or “tails” or to
saying 0 or 1. We say that the information so conveyed is one bit.

If Alice flipped two coins, she could say which of the four possible outcomes actually happened, by saying
0 or 1 twice. Similarly, the result of an experiment with eight equally likely outcomes could be conveyed with
three bits, and more generally 2n outcomes with n bits. Thus the amount of information is the logarithm
(to the base 2) of the number of equally likely outcomes.

Note that conveying information requires two phases. First is the “setup” phase, in which Alice and Bob
agree on what they will communicate about, and exactly what each sequence of bits means. This common
understanding is called the code. For example, to convey the suit of a card chosen from a deck, their code
might be that 00 means clubs, 01 diamonds, 10 hearts, and 11 spades. Agreeing on the code may be done
before any observations have been made, so there is not yet any information to be sent. The setup phase can
include informing the recipient that there is new information. Then, there is the “outcome” phase, where
actual sequences of 0 and 1 representing the outcomes are sent. These sequences are the data. Using the
agreed-upon code, Alice draws the card, and tells Bob the suit by sending two bits of data. She could do so
repeatedly for multiple experiments, using the same code.

After Bob knows that a card is drawn but before receiving Alice’s message, he is uncertain about the suit.
His uncertainty, or lack of information, can be expressed in bits. Upon hearing the result, his uncertainty is
reduced by the information he receives. Bob’s uncertainty rises during the setup phase and then is reduced
during the outcome phase.
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Note some important things about information, some of which are illustrated in this example:

• Information can be learned through observation, experiment, or measurement

• Information is subjective, or “observer-dependent.” What Alice knows is different from what Bob
knows (if information were not subjective, there would be no need to communicate it)

• A person’s uncertainty can be increased upon learning that there is an observation about which infor-
mation may be available, and then can be reduced by receiving that information

• Information can be lost, either through loss of the data itself, or through loss of the code

• The physical form of information is localized in space and time. As a consequence,

– Information can be sent from one place to another

– Information can be stored and then retrieved later

1.1 The Boolean Bit

As we have seen, information can be communicated by sequences of 0 and 1 values. By using only 0 and
1, we can deal with data from many different types of sources, and not be concerned with what the data
means. We are thereby using abstract, not specific, values. This very powerful approach lets us ignore many
messy details associated with specific information processing and transmission systems.

Bits are simple, having only two possible values, and the mathematics used to denote and manipulate
single bits is not difficult. It is known as Boolean algebra, after the mathematician George Boole (1815 -
1864). In some ways Boolean algebra is similar to the algebra of integers or real numbers which is taught in
high school, but in other ways it is different.

Algebras deal with variables that have certain possible values, and with functions which, when presented
with one or more variables, return a result which again has certain possible values. In the case of Boolean
algebra, the possible values are 0 and 1.

There are exactly four Boolean functions of a single variable. One of them, called the identity, simply
returns its argument. Another, called not, or negation, or inversion, or complement, changes 0 into 1 and
vice versa. The other two simply return either 0 or 1 regardless of the argument. Here is a table showing
these four functions:

x f(x)

Argument IDENTITY NOT ZERO ONE

0 0 1 0 1
1 1 0 0 1

Table 1.1: Boolean functions of a single variable

Note that Boolean algebra is simpler than algebra dealing with integers or real numbers, each of which
has infinitely many functions of a single variable.

How many Boolean functions are there of two variables A and B? Each of the two arguments can take on
either of two values, so there are four possible input combinations. There are 16 different ways of assigning
the two Boolean values to four inputs. Of these 16, two simply ignore the input, four assign the output to
be either A or B or their complement, and the other ten depend on both arguments. The most often used
are AND, OR, XOR (exclusive or), NAND (not and), and NOR (not or), shown in Table 1.2.

It is tempting to think of the Boolean values 0 and 1 as the integers 0 and 1. Then AND would correspond
to multiplication and OR to addition, sort of. However, familiar results from ordinary algebra simply do not
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x f(x)

Argument AND NAND OR NOR XOR

00 0 1 0 1 0
01 0 1 1 0 1
10 0 1 1 0 1
11 1 0 1 0 0

Table 1.2: Some Boolean functions of two variables

hold for Boolean algebra, so such analogies are dangerous. It is important to distinguish the integers 0 and
1 from the Boolean values 0 and 1; they are not the same.

Keeping all this straight is made more difficult by the standard notation used for Boolean algebra. (We
will use this notation here, even though it can be confusing, because less confusing notations are awkward in
practice.) The AND function is represented the same way as multiplication, by writing two boolean values
next to each other or with a dot in between: A AND B is written AB or A ·B. The OR function is written
using the plus sign: A + B means A OR B. Negation, or the NOT function, is denoted by a bar over the
symbol or expression, so NOT A is A. Finally, the exclusive-or function XOR is represented by a circle
with a plus sign inside, A ⊕ B.

NOT A
AND A ·B

NAND A ·B
OR A + B

NOR A + B
XOR A ⊕ B

Table 1.3: Boolean logic symbols

Several general properties of Boolean functions are useful. These can be proven by simply demonstrating
that they hold for all possible input values. For example, a function is said to be reversible if, knowing
the output, the input can be determined. Two of the four functions of a single variable are reversible in this
sense (and in fact are self-inverse). Clearly none of the functions of two (or more) inputs can by themselves
be reversible, since there are more input variables than output variables. However, some combinations of
two or more such functions can be reversible if the resulting combination has the name number of outputs
as inputs; for example it is easily demonstrated that the exclusive-or function A ⊕ B is reversible when
augmented by the function that returns the first argument — that is to say, more precisely, the function of
two variables that has two outputs, one A ⊕ B and the other A, is reversible.

For functions of two variables, there are many properties to consider. For example, a function of two
variables A and B is said to be commutative if its value is unchanged when A and B are interchanged, i.e.,
if f(A,B) = f(B,A). Thus the function AND is commutative because A ·B = B ·A. Some of the other 15
functions are also commutative. Some other properties of Boolean functions are illustrated in the identities
in Table 1.4.

There are other notations for Boolean algebra. The one used here is the most common. Sometimes AND,
OR, and NOT are represented in the form AND(A,B), OR(A,B), and NOT (A). Sometimes infix notation
is used where A∧B denotes A ·B, A∨B denotes A + B, and ∼A denotes A. Boolean algebra is also useful
in mathematical logic, where the notation A∧B for A ·B, A∨B for A+B, and ¬A for A is commonly used.

The boolean bit has the property that it can be copied (and also that it can be discarded). In Boolean
algebra copying is done by assigning a name to the bit and then using that name more than once. Because
of this property the boolean bit is not a good model for quantum-mechanical systems. A different model,
the quantum bit, is described below.
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Idempotent: A ·A = A Absorption: A · (A + B) = A
A + A = A A + (A ·B) = A

Complementary: A ·A = 0 Associative: A · (B · C) = (A ·B) · C
A + A = 1 A + (B + C) = (A + B) + C

A ⊕ A = 0 A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
A ⊕ A = 1

Minimum: A · 1 = A Unnamed Theorem: A · (A + B) = A ·B
A · 0 = 0 A + (A ·B) = A + B

Maximum: A + 0 = A De Morgan: A ·B = A + B
A + 1 = 1 A + B = A ·B

Commutative: A ·B = B ·A Distributive: A · (B + C) = (A ·B) + (A · C)
A + B = B + A A + (B · C) = (A + B) · (A + C)

A ⊕ B = B ⊕ A
A ·B = B ·A

A + B = B + A

Table 1.4: Properties of Boolean Algebra
These formulas apply and are valid for all values of A, B, and C.

1.2 The Circuit Bit

Combinational logic circuits are a way to represent Boolean expressions graphically. Each Boolean
function (NOT , AND, XOR, etc.) corresponds to a “combinational gate” with one or two inputs and one
output, as shown in Figure 1.1. The different types of gates have different shapes. Lines are used to connect
the output of one gate to one or more gate inputs, as illustrated in the circuits of Figure 1.2.

Logic circuits are widely used to model digital electronic circuits, where the gates represent parts of an
integrated circuit and the lines represent the signal wiring.

The circuit bit can be copied (by connecting the output of a gate to two or more gate inputs) and
discarded (by leaving an output unconnected).

Combinational circuits have the property that the output from a gate is never fed back to the input of
any gate whose output eventually feeds the input of the first gate. In other words, there are no loops in the
circuit. Circuits with loops are known as sequential logic, and Boolean algebra is not sufficient to describe
them. For example, consider the simplest circuit in Figure 1.3. The inverter (NOT gate) has its output
connected to its input. Analysis by Boolean algebra leads to a contradiction. If the input is 1 then the

Figure 1.1: Logic gates corresponding to the Boolean functions NOT , AND, OR, XOR, NAND, and NOR
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Figure 1.2: Some combinational logic circuits and the corresponding Boolean expressions

. . .

Figure 1.3: Some sequential logic circuits

output is 0 and therefore the input is 0. There is no possible state according to the rules of Boolean algebra.
On the other hand, consider the circuit in Figure 1.3 with two inverters. This circuit has two possible states.
The bottom circuit has two stable states if it has an even number of gates, and no stable state if it has an
odd number.

A model more complicated than Boolean algebra is needed to describe the behavior of sequential logic
circuits. For example, the gates or the connecting lines (or both) could be modeled with time delays. The
circuit at the bottom of Figure 1.3 (for example with 13 or 15 gates) is commonly known as a ring oscillator,
and is used in semiconductor process development to test the speed of circuits made using a new process.

1.3 The Control Bit

In computer programs, Boolean expressions are often used to determine the flow of control, i.e., which
statements are executed. Suppose, for example, that if one variable x is negative and another y is positive,
then a third variable z should be set to zero. In the language Scheme, the following statement would
accomplish this: (if (and (< x 0) (> y 0)) (define z 0)) (other languages have their own ways of
expressing the same thing).

The algebra of control bits is like Boolean algebra with an interesting difference: any part of the control
expression that does not affect the result may be ignored. In the case above (assuming the arguments of and
are evaluated left to right), if x is found to be positive then the result of the and operation is 0 regardless of
the value of y, so there is no need to see if y is positive or even to evaluate y. As a result the program can
run faster, and side effects associated with evaluating y do not happen.
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1.4 The Physical Bit

If a bit is to be stored or transported, it must have a physical form. Whatever object stores the bit has
two distinct states, one of which is interpreted as 0 and the other as 1. A bit is stored by putting the object
in one of these states, and when the bit is needed the state of the object is measured. If the object has
moved from one location to another without changing its state then communications has occurred. If the
object has persisted over some time in its same state then it has served as a memory. If the object has had
its state changed in a random way then its original value has been forgotten.

In keeping with the Engineering Imperative (make it smaller, faster, stronger, smarter, safer, cheaper),
we are especially interested in physical objects that are small. The limit to how small an object can be and
still store a bit of information comes from quantum mechanics. The quantum bit, or qubit, is a model of
an object that can store a single bit but is so small that it is subject to the limitations quantum mechanics
places on measurements.

1.5 The Quantum Bit

According to quantum mechanics, it is possible for a small object to have two states which can be
measured. This sounds perfect for storing bits, and the result is often called a qubit, pronounced “cue-
bit.” There are two features of quantum mechanics, superposition and entanglement, that make qubits
different from boolean bits and therefore interesting.

Suppose a quantum mechanical object is prepared so that it has a combination, or superposition, of its
two states, i.e., a state somewhere between the two states. What is it that would be measured in that case?

In a classical, non-quantum context, a measurement could determine just what that combination is.
Furthermore, for greater precision a measurement could be repeated, and multiple results averaged. However,
the quantum context is different. In a quantum measurement, the question that is asked is whether the
object is or is not in some particular state, and the answer is always either “yes” or “no,” never “maybe”
and never, for example, “27% yes, 73% no.” Furthermore, after the measurement the system ends up in
the state corresponding to the answer, so further measurements will not yield additional information. The
result of any particular measurement cannot be predicted, but the likelihood of the answer, expressed in
terms of probabilities, can. This peculiar nature of quantum mechanics offers both a limitation of how
much information can be carried by a single qubit, and an opportunity to design systems which take special
advantage of these features.

We will illustrate quantum bits with an example. Let’s take as our qubit a photon, which is the elementary
particle for electromagnetic radiation, including radio, TV, and light. A photon is a good candidate for
carrying information from one place to another. It is small, and travels fast.

A photon has electric and magnetic fields oscillating simultaneously. The direction of the electric field is
called the direction of polarization (we will not consider circularly polarized photons here). Thus if a photon
is headed in the z-direction, its electric field can be in the x-direction, in the y-direction, or in fact in any
direction in the x-y plane, sometimes called the “horizontal-vertical plane.”

The polarization can be used to store a bit of information. Thus Alice could prepare a photon with
horizontal polarization if the bit is 0 and vertical polarization if the bit is 1. Then when Bob gets the
photon, he can measure its vertical polarization (i.e., ask whether the polarization is vertical). If the answer
is “yes,” then he infers the bit is 1.

It might be thought that more than a single bit of information could be transmitted by a single photon’s
polarization. Why couldn’t Alice send two bits, using angles of polarization different from horizontal and
vertical? Why not use horizontal, vertical, half-way between them tilted right, and half-way between them
tilted left? The problem is that Bob has to decide what angle to measure. He cannot, because of quantum-
mechanical limitations, ask the question ”what is the angle of polarization” but only “is the polarization in
the direction I choose to measure.” And the result of his measurement can only be “yes” or “no,” in other
words, a single bit. And then after the measurement the photon ends up either in the plane he measured (if
the result was “yes”) or perpendicular to it (if the result was “no”).
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If Bob wants to measure the angle of polarization more accurately, why couldn’t he repeat his mea-
surement many times and take an average? This does not work because the very act of doing the first
measurement resets the angle of polarization either to the angle he measured or to the angle perpendicular
to it. Thus subsequent measurements will all be the same.

Or Bob might decide to make multiple copies of the photon, and then measure each of them. This
approach does not work either. The only way he can make a copy of the photon is by measuring its
properties and then creating a new photon with exactly those properties. All the photons he creates will be
the same.

What does Bob measure if Alice had prepared the photon with an arbitrary angle? Or if the photon had
its angle of polarization changed because of random interactions along the way? Or if the photon had been
measured by an evil eavesdropper (typically named Eve) at some other angle and therefore been reset to
that angle? In these cases, Bob always gets an answer “yes” or “no,” for whatever direction of polarization
he chooses to measure, and the closer the actual polarization is to that direction the more likely the answer
is yes. To be specific, the probability of the answer yes is the square of the cosine of the angle between Bob’s
angle of measurement and Alice’s angle of preparation. It is not possible to predict the result of any one of
Bob’s measurements. This inherent randomness is an unavoidable aspect of quantum mechanics.

Qubits have other interesting properties, not mentioned so far, when there are two or more of them and
they are prepared together in particular ways. One such property, which we will not discuss now, known
as “entanglement,” allows two photons to go to different places yet have a single correlated state such that
measurement of one of the photons influences subsequent measurements of the other. Many people find such
behavior bizarre because it is so different from everyday experience.

Note that not all quantum systems exhibit the peculiarities discussed here. For example, if the angles
of polarization are constrained to be horizontal and vertical, and there are no noise perturbations, and the
appropriate angle for measurement is known, a measurement can always be made without perturbing the
photon. Thus in this special case copying is possible.

1.5.1 An Advantage of Qubits

There are things that can be done in a quantum context but not classically. Some are advantageous.
Here is one example:

Consider again Alice trying to send information to Bob using polarized photons. She prepares photons
that have either horizontal or vertical polarization, and tells that to Bob, during the setup phase. Now let
us suppose that a saboteur Sam wants to spoil this communication by processing the photons at some point
in the path between Alice and Bob. He uses a machine that simply measures the polarization at an angle
he selects. If he selects 45◦, every photon ends up with a polarization at that angle or perpendicular to it,
regardless of its original polarization. Then Bob, making a vertical measurement, will measure 0 half the
time and 1 half the time, regardless of what Alice sent.

Alice learns about Sam’s scheme and wants to reestablish reliable communication with Bob. What can
she do?

She tells Bob (using a path that Sam does not overhear) she will send photons at 45◦ and 135◦, so he
should measure at one of those angles. Sam’s machine then does not alter the photons. Of course if Sam
discovers what Alice is doing, he can rotate his machine back to vertical. Or there are other measures and
counter-measures that could be put into action.

This scenario relies on the quantum nature of the photons, and the fact that single photons cannot be
measured by Sam except along particular angles of polarization. Thus Alice’s technique for thwarting Sam
is not possible with classical bits.

1.6 The Classical Bit

Because quantum measurement generally alters the object being measured, a quantum bit cannot be
measured a second time. On the other hand, if a bit is represented by many objects acting together, then
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after a measurement enough objects can be left unchanged so that the same bit can be measured again.
In today’s electronic systems, a bit of information is carried by many objects, all prepared in the same

way (or at least that is a convenient way to look at it). Thus in a semiconductor memory a single bit is
represented by the presence or absence of perhaps a thousand electrons. Similarly, a large number of photons
are used in radio communication.

Because many objects are involved, measurements on them are not restricted to a simple yes or no, but
instead can range over a continuum of values. Thus the voltage on a semiconductor logic element might be
anywhere in a range from, say, 0V to 5V . The voltage might be interpreted to allow a margin of error, so
that voltages between 0V and 1V would represent logical 0, and voltages between 4V and 5V a logical 1.
The circuitry would not guarantee to interpret voltages between 1V and 4V properly.

If the noise in a circuit is always smaller than 1V , and the output of every circuit gate is either 0V or 5V ,
then the voltages can always be interpreted as bits without error. Circuits of this sort display what is known
as “restoring logic” since small deviations in voltage from the ideal values of 0V and 5V are eliminated as
the information is processed. The robustness of modern computers depends on the use of restoring logic.

A classical bit is an abstraction in which the bit can be measured without perturbing it. As a result
copies of a classical bit can be made. This model works well for circuits using restoring logic.

Because all physical systems ultimately obey quantum mechanics, the classical bit is always an approxi-
mation to reality. However, even with the most modern, smallest devices available, it is an excellent one.

An interesting question is whether the classical bit approximation will continue to be useful as advances
in semiconductor technology allow the size of components to be reduced. Ultimately, as we try to represent
or control bits with a small number of atoms or photons, the limiting role of quantum mechanics will become
important. It is difficult to predict exactly when this will happen, but some people believe it will be before
the year 2015.

1.7 Summary

There are several models of a bit, useful in different contexts. These models are not all the same. In the
rest of these notes, the boolean bit will be used most often, but sometimes the quantum bit will be needed.
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